

User Manual

EMSDS Series AC Servo Drive

Shenzhen Honyee Technology Co., Ltd.

Safety Caution

Before product storage, installation, wiring, operation, inspection or maintenance, the user must be familiar and comply with the following important matters to ensure to use the product safely .

familiar and comply with the following important matters to ensure to use the produc	st safely.
<u> </u>	
Danger	
Application	aive ges and
 Forbidden to use the product when it is exposed to water gas, corror combustible gas. Or it could cause an electric shock or a fire. 	sive gas and
 Forbidden to use products in places with more direct sunlight, dust, salt and n 	netal nowder
 Forbidden to use products in places when more uncer samplify dust, sait and in Forbidden to use products in places where water, oil and medicine are drippin 	-
	-0-
Caution	
Wiring	
 Please ground the grounding terminal reliably. Poor grounding may cause ele fire. 	ectric shock or
 Please do not connect 380V power supply to 220 V servo drives, otherwise equipment damage and electric shock or fire. 	e it will cause
• The U, V, W motor output terminal and the motor wiring terminal must	be connected
one-to-one correspondence, otherwise the motor may cause equipmer casualties caused by the over speed vehicle.	nt losing and
• Please fasten the power supply and motor output terminals, otherwise it may a	cause fire.
Operation	
• When the mechanical equipment starts operation, it must match proper pa does not adjust to the appropriate setting values, it may cause the mechanical lose controlling.	
 Before starting operation, please confirm if you can start emergency switch any time. 	h shutdown at
 Please test whether the servo motor is running normally without load fir connect the load to avoid unnecessary loss. 	stly, and then
 Do not switch on and off power frequently, otherwise it will cause drive overl 	heating
	ilouning.
Prohibition	
Working	
 Working When the motor is running, it is forbidden to touch any parts in rotation, other than the motor is running. 	harwisa it will
cause casualties.	
• When the equipment is in operation, it is forbidden to move connecting cable	es, otherwise it
will cause injury to the person or damage to the equipment.	

Version: V1.0.0

Table of Content

Chapter 1 Product Inspection And Installation	1
1.1 Product Inspection	1
1.2 Product Front Panel	1
1.3 Product Installation	3
Chapter 2 Servo Specifications	6
2.1 Servo Drive Specification	6
2.2 Servo Drive Naming Rule	7
2.3 Servo Motor Naming Rule	7
2.4 Servo Motor And Matched Servo Drive List	8
Chapter 3 Drive and Motor Dimension	9
3.1 Drive Dimension	9
3.2 Motor Dimension	10
Chapter 4 Wiring and Introduction	12
4.1 Servo System Wiring	12
4.2 Servo driver terminals Introduction	14
4.3 Main Circuit Terminal	15
4.4 CN1 Control Signal Terminal	16
4.5 CN2 Encoder Signal Terminal	28
4.6 CN3 And CN4 Terminal Definition	30
4.7 Anti-jamming Countermeasures of Power Wiring	33
Chapter 5 Running Mode and Wiring	37
5.1 Position Control Mode	37
5.2 Speed Control Mode Wiring	43
5.3 Torque Control Mode	46
5.4 Origin Regression Function And Relevant Parameters Introduction	48
5.5 Pre-operational Inspection	50
Chapter 6 Operation And Display	52
6.1 Drive Panel Introduction	52
6.2 Main Menu	52
6.3 Steps To Set Parameters	53
6.4 Status Monitoring	53

6.5 Analog Quantity Zeroing Adjustment	55
6.6 Encoder Selection	55
6.7 How To Reset Default Parameters	55
Chapter 7 Parameters	56
7.1 PA Group	56
7.2 P3 Group Parameters For Multifunctional Terminals	71
7.3 P4 Group Parameters For Internal Position Command	78
Chapter 8 Fault and Troubleshooting	84

Chapter 1 Product Inspection And Installation

1.1 Product Inspection

This product has made the complete function test before delivery, please check below points After unpacking. (for prevented the product to be abnormal owing to shipping process, please make detail inspection as the following items after breaking the seal:)

- (Inspect the types of servo driver and servo motor and ensure that are the same types in the order form.) The purchased product is identical with your desired.
- Please do not power it on if there is any damage on the product appearance.
- Inspect the parts of servo driver and servo motor to see any loosen parts such as loosened or fallen off screw.
- Rotate the servo motor shaft by hand and should be smooth rotation. But the servo motor with holding brake is unable to rotate directly.

If there is any break down item or abnormal phenomenon mentioned above, please contact with the dealer immediately.

1.2 Product Front Panel

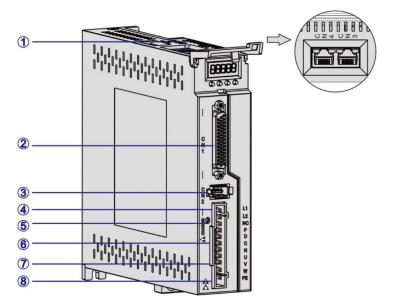


Fig.1-1 EMSD5-A Front Panel Introduction

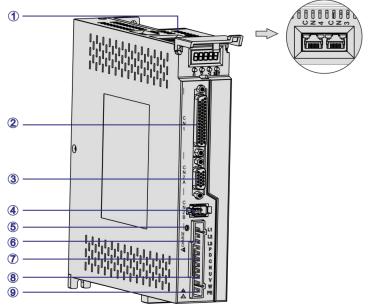


Fig.1-2 EMSD5-B Front Panel Introduction

Ite	Item Terminal		Introduction
Α	В	Terminar	Introduction
1	1	CN3、CN4	Communication terminal
2	2	CN1	Input and output control signal terminal
3	-	CN2	Encoder signal terminal
4		L1,L2	Power supply terminal
-	3	CN2A	Encoder signal terminal for 2500ppr incremental encoder
-	4	CN2B	Encoder signal terminal for 17 bits absolute encoder
	5	L1, L2, L3	Power supply terminal for 3 phases 220VAC
			Bus voltage indicator. It is used to indicate the bus capacitance in a
			charged state. When the indicator lights on, even if the power
5	6	CHARGE	supply is off, the internal capacitor of the servo unit may still have
			a charge. Therefore, do not touch the power terminal when the
			lights on to avoid electric shock.
6	\bigcirc	P,D,C,N	Regeneration resistance terminal
\bigcirc	8	U,V,W	Servo motor UVW connection terminal
8	9	PE	Ground terminal

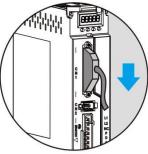
1.3 Product Installation

1.3.1 Servo Drive Installation

Installation direction

The normal mounting direction of the servo drive is vertical and upright..

Fixed installation


During installation, please tighten the 2pcs M4 fixing screws at the back of the servo drive.

• Grounding

Be sure to ground the driver grounding terminal, otherwise there may be a risk of electric shock or interference to produce wrong action.

Wiring requirement

When connecting the drive, please wire the cable down (refer to the below picture) to avoid any liquid attached on the cable and then it flows into the drive along with the cable.

Please connect the cable in the downward direction Fig.1-3 Wring Direction Requirement

Installation interval

Refer to Fig.1-4 for the distance between drives and installation intervals with other devices, and please note that the picture indicates the smallest size, in order to ensure the performance and life of the drives, please leave the full installation interval as far as possible.

Cooling

The servo drive adopts natural cooling mode and forced heat dissipation mode.

• Installation considerations

Prevent dust or iron chips from entering the servo drive when installing the electrical controlling cabinet.

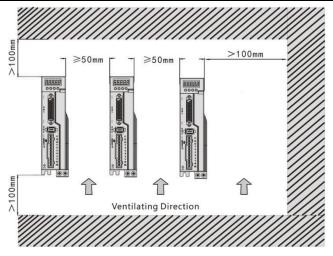


Fig.1-4 Installation Interval

1.3.2 Environment Condition For Installation

Since the environment conditions for servo driver installation have the direct influence to the normal function and service life of the servo driver, therefore the environment conditions must be conformed to the following conditions:

- Ambient temperature: 0 to 40°C; Ambient humidity: less than 80% (no condense).
- Storage temperature: -40 to 50°C; Storage humidity: less than 93% (no condense).
- Vibration: less than 0.5G.
- Preventive measure shall be taken against raindrop or moist environment.
- Avoid direct sunlight.
- Preventive measure shall be taken against corrosion by oil mist and salinity.
- Keep away from radioactive and inflammable substances.
- Free from corrosive liquid and gas.

1.3.3 Servo Motor Installation

- For horizontal installation: In order to prevent water, oil, etc. From entering inside of the servo motor, please put the cable connector downward.
- For vertical installation: if the shaft of the servo motor is in upward direction with a speed reducer, some prevention measure shall be taken43 against entering inside of the servo motor by oil come from the speed reducer.
- In case of installation or removing the servomotor, please do not hit the servo motor with a

hammer, otherwise the shaft and the encoder can be damaged.

1.3.4 Motor Rotation Direction Definition

The motor rotating direction description in this handbook is defined as facing the shaft of the servo motor, if the rotating shaft is in counterclockwise direction will be called as positive direction, or in clockwise as reversal direction.

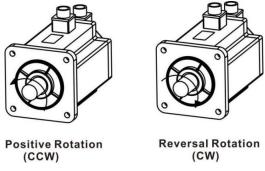


Fig.1-5 Motor Rotation Direction

Chapter 2 Servo Specifications

2.1 Servo Drive Specification

Model		EMSD5-A	EMSD5-B						
Power		0.05KW~1KW	1KW~3KW						
Main Circuit	<u>^</u>	C220V-15%~10%	1 phase/3 phases AC220V-15%~10%						
	50/60Hz								
	0:Position	l.							
	1:Speed.								
Control Mode	· ·	2:Torque.							
		and speed.							
		and torque.							
	5:Speed a								
Protection	· ·		voltage, Overload, Abnormal of main						
Function		onormal encoder, Out of							
Monitor Function	Speed, Cu	irrent position, Comma	nd pulse accumulation, Position deviation,						
Women Function	Motor torque, Motor current, Running state etc.								
	1:Servo on								
	2:Alarm clearance								
	3:CCW drive inhibition								
	4:CW drive inhibition								
Control Input	5:Deviation counter clearance								
	6:Command pulse inhibition								
	7:CCW torque limit								
	8:CW torque limit								
Control Output	Servo rea	dy/Servo alarm/Positior	ing completion/Mechanical braking						
Regeneration	D 11 1 / 1	2 11							
Braking	Built-in/ I	Built-out							
Load	Less than	3 times of motor torque							
Display	5 LED dig	gital display and 4 keys							
Communication	RS485								
		0:pulse+direction							
	Input	1:CCW/CW pulse							
Position Control	-	2:A/B phase orthogona	l pulse						
Mode		3:Internal position con							
	Flee	Electronic gear ratio 1-32767/1-32767							
		Sour runo							

4

2.2 Servo Drive Naming Rule

0

EMSD5 - A S 040 2

3

Serial No. Definition 0 EMSD5 series ac servo drive. 2 A and B frame S: Simple load pulse 6 H: Heavy load pulse E: Ether CAT 4 The branch power range: 040: 400W; 075: 750W.

2.3 Servo Motor Naming Rule

EM - 60 S 024N 30 S 2 2 4 6 6 7 1 2 6 8

Serial No.	Definition					
0	EMHEATER Servo Motor					
2	Flange: 60(mm),80(mm), 110(mm),130(mm)					
3	Rated voltage: 220V(S)					
4	Rated torque($\times 0.1$ N.m): 048=4.8N.m.					
6	Rated speed(×100rpm): 30=3000rpm.					
6	Encoder resolution: S: 17 bit absolute encoder I: 2500ppr incremental encoder W: with battery R: resolver					
•	1: No 2: with oil seal 3: with brake 4: with oil seal and brake					
8	 Flat without keys. Flat with keys and screw thread 					

NOTE

1. The code 02430 means the motor rated toque is 2.4N.m and rated speed is 3000rpm.

2. The rated power: P=0.1047×N×T=0.1047×2.4×3000=753.84W≈0.75KW. T=rated torque, N=rated speed.

2.4 Servo Motor and Matched Servo Drive List

Table 2-1

Flange	Model	Power (W)	Speed (RPM)	Matched Drive	Encoder
60mm	EM-60S006N30S22	200	3000	EMSD5-A	17.1.4
oomm	EM-60S013N30S22	400	3000	EMSD3-A	17-bit
80mm	EM-80S024N30S22	750	3000	EMSD5-A	absolute encoder
8011111	EM-80S032N30S22	1000	3000	EMSD3-A	encoder
	EM-110S020N30I22	600	3000		
	EM-110S040N20I22	800	2000		
110	EM-110S040N30I22	1200	3000		2500ppr
110mm	EM-110S050N30I22	1500	3000		incremental encoder
	EM-110S060N20I22	1200	2000		encoder
	EM-110S060N30I22	1800	3000		
	EM-130S040N25S22	1000	2500		
	EM-130S050N25S22	1300	2500	EMSD5-B	
	EM-130S060N25S22	1500	2500		
	EM-130S077N25S22	2000	2500		17-bit
130mm	EM-130S100N10S22	1000	1000		absolute
	EM-130S100N15S22	1500	1500		encoder
	EM-130S100N25S22	2600	2500		
	EM-130S150N15S22	2300	1500		
	EM-130S150N25S22	3800	2500		

Chapter 3 Drive and Motor Dimension

3.1 Drive Dimension

The user can install the servo drive with the bottom plate and the installed direction is perpendicular to the installation facing. Recommended to cool the servo drive with fan or natural cooling.

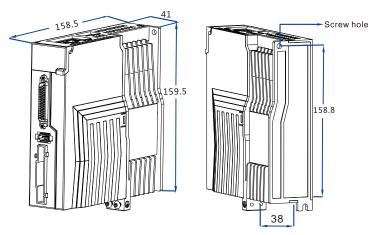


Fig.3-1 EMSD5-A dimension

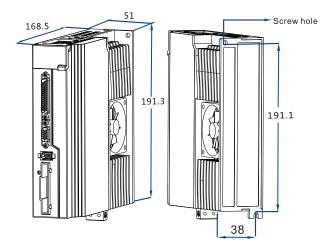


Fig.3-2 EMSD5-B dimension

EMSD5-AS040 doesn't have the heat sink with a fan.

3.2 Motor Dimension

• Flange 60mm

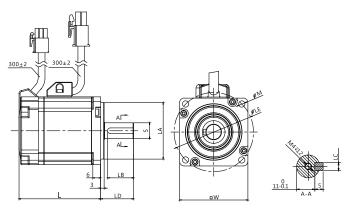


Fig.3-3 Flange 60mm And Table 3-2

Model	W	L	LE	S	LA	LB	LC	LD	М
EM-60S006N30S22	60	72	70	14	50	25	5	30	4
EM-60S013N30S22	60	90	70	14	50	25	5	30	4

• Flange 80mm

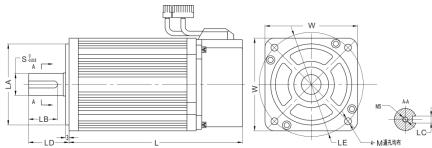


Fig.3-4 Flange 80mm And Table 3-3

Model	W	L	LE	S	LA	LB	LC	LD	М
EM-80S024N30S22	80	96	90	19	70	25	6	38	6
EM-80S032N30S22	80	113.5	90	19	70	25	6	38	6
EM-80S040N25S22	80	191	90	19	70	25	6	35	6

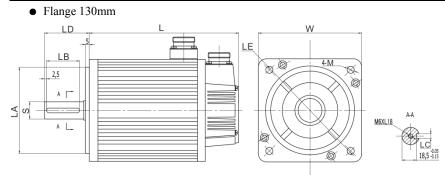


Fig.3-5 Flange 130mm And Table 3-2

Model	W	L	LE	S	LA	LB	LC	LD	М
EM-130S040N25S22	130	166	145	22	110	42	6	57	6
EM-1308050N25822	130	171	145	22	110	42	6	57	6
EM-130S060N25S22	130	179	145	22	110	42	6	57	6
EM-130S077N25S22	130	192	145	22	110	42	6	57	6
EM-130S100N10S22	130	213	145	22	110	42	6	57	6
EM-130S100N15S22	130	213	145	22	110	42	6	57	6
EM-130S100N25S22	130	209	145	22	110	42	6	57	6
EM-130S150N15S22	130	241	145	22	110	42	6	57	6
EM-130S150N25S22	130	231	145	22	110	42	6	57	6

Chapter 4 Wiring and Introduction

4.1 Servo System Wiring

4.1.1 Servo Drive Wiring

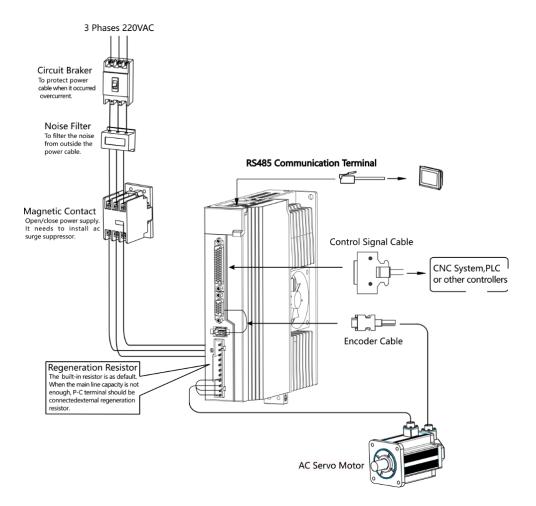
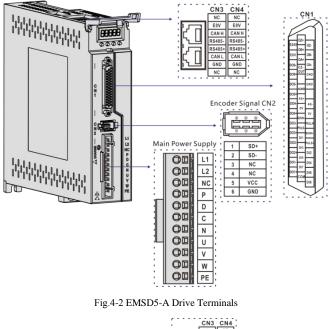


Fig.4-1 Servo System Wiring

4.1.2 Wiring Introduction

Wiring Notes:

- The control cable length should be less than 3 meters and the encoder cable length 20 meters.
- Check that the power supply and wiring of L1,L2 or L1,L2,L3 are correct.
- Please do not connect to 380V power supply.
- The output terminals(U,V,W) must be connected with the servo motor connections(U,V,W) correspondently, otherwise the servo motor will stop or over speed. However, by exchanging three-phase terminal cannot cause the motor to reverse; this point is different with asynchronous motor.
- Earthed wiring must be reliable with a single-point connection.
- Pay attention to the correct direction of freewheel diode which is connected with the delay at the output terminal, other can cause the output circuit breakdown.
- In order to protect the servo driver from noise interference that can cause malfunction, please use an insulation transformer and noise filter on the power lines.
- Wiring the power cables(power supply, main circuit, etc) at a distance over 30cm away from the control signal cables, do not lay them together.
- Install a non-fuse circuit breaker that can shut off the external power supply immediately for in case of the servo driver fault.


Connect Terminal	Symbol	Wire Specification		
Main Power Supply	L1, L2, [L3]	1.5~4mm ²		
Servo Motor	U, V, W	1.5~4mm ²		
Ground		1.5~4mm ²		
Control Signals	CN1	\geq 0.14mm2(AWG26), Shielded.		
Encoder Signals	CN2	\geq 0.14mm2(AWG26), Shielded.		
Regenerative Resistors Terminals	P、D/P、C	1.5~4mm ²		

4.1.3 Electric Wire Specifications

Must use a twisted pair wire cable for the encoder signal wiring. If the encoder signal cable is too long(>20m), in which the encoder power supply can be insufficient, may use multi wires or thick wire for the power supply wiring.

4.2 Servo driver terminals Introduction

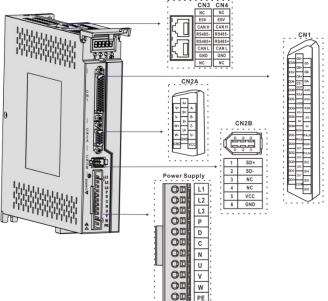


Fig.4-3 EMSD5-B Drive Terminals

The above picture shows the pins arrangement of the drive.

4.3 Main Circuit Terminal

4.3.1 Main Circuit Terminal Introduction

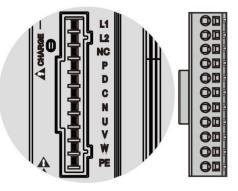
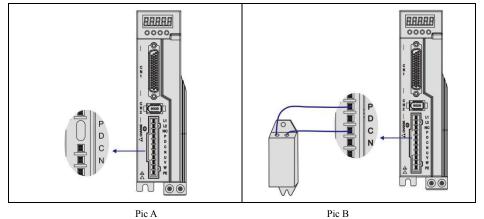


Fig.4-4 Main Circuit Terminal

Terminal Name	Symbol	Detailed Explanation
	L1、L2	Connect to external AC power supply ,1 phase 220VAC -15%~+10%,50/60Hz.
Main Power Supply	L1、L2、L3	Connect to external AC power supply ,3 phases 220VAC -15%~+10% ,50/60Hz.
	NC	Null
	P, D	When use the built-in resistor, please connect P and D.
Regenerative Resistance	P、C	When the external regeneration resistance is required, please disconnect P and D and crossover it to terminal P and C. Leaving N disconnected.
	U、V、W	UVW phase output to servo motor.
Servo Motor		Ground with servo motor and power supply.


 The built-in resistor has been set as default by factory: P and D connector are in short-cut condition.

4.3.2 Regeneration Resistance Connection

If use the built-in resistor, please connect P and D(a 4 pins connector for built-in resistor has

been set by factory, so you can insert it to the terminal directly), as picture A showed.

When an external regeneration resistance is connected to the servo drive, the short circuit between terminal P and D must be disconnected. Then the external regeneration resistance could be connected between P and C, and leave N alone, as picture B showed.

. .

• Do not connect the external brake resistance to the positive and negative poles of the bus P, N, otherwise it will cause explosion and fire.

• Must be over minimum resistance value at 25Ω . Otherwise it would cause drive alarm or damage.

• Please install external brake resistance on non-combustible materials such as metal.

4.4 CN1 Control Signal Terminal

4.4.1 CN1 Terminal Introduction

The CN1 connector DB44 plug provides the signals interfaced with the host-controller. The signal includes:

- 8 programmable input terminals
- 6 programmable output terminals
- Analog command inputs
- Pulse command inputs

4.4.2 CN1 terminal pin distribution

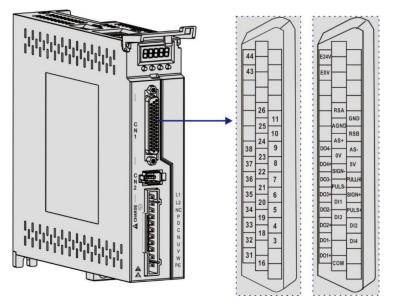


Fig.4-5 EMSD5-A[B]S Series CN1 Terminal Pin Distribution

A 24-26 AWG cable is recommended.

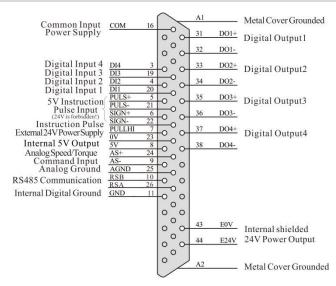


Fig.4-6 EMSD5-A[B]S Series CN1 Terminal

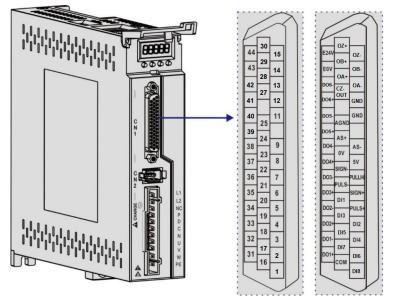


Fig.4-7 EMSD5-A[B]H Series CN1 Terminal Pin Distribution

A 24-26 AWG cable is recommended.

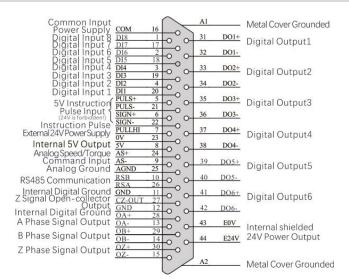


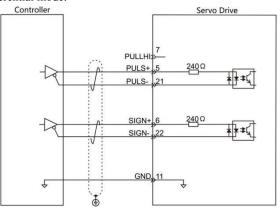
Fig.4-8 EMSD5-A[B]H Series CN1 Terminal

4.4.3 Position Instruction Input Signal

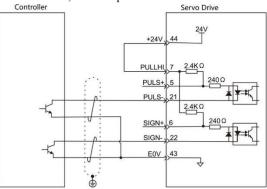
Signal	Name	Pin No.	Function
	PULS+	5	High speed photo isolation input.
	PULS-	21	Working mode is set by parameter PA-14:
	SIGN+	6	• Pulse+direction.
Position			• CCW/CW pulse.
Pulse	SIGN-	22	• A、B orthogonal pulse.
Instruction			• Input of internal position control.
		7	External 24V power input interface of the instruction
	PULLHI	/	pulse.
	GND	11/12	Internal digital signal ground.

The output circuit of instruction pulse of the upper device side can be selected from the differential output or collector open circuit output. Its maximum input frequency and minimum pulse width are shown in the following table:

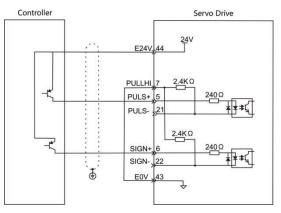
Pulse mode	Maximun-frequency (pps)	Minimum pulse width(us)	
Differential output	500k	1	
Collector open circuit	200k	2.5	



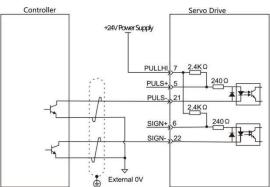
• If the output pulse width of the upper device is less than the minimum pulse width, it will cause the drive to receive error pulses.

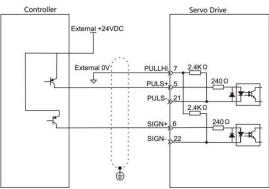

• The terminal between PULS+ and PULS-/SIGN+ and SIGN- only support below 5V signal. If over than 5V, it needs to connect external resistances.

Input Circuit Of Pulse Instruction Diagram


1) When it is differential mode:

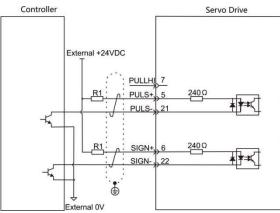
- 2) When it is collector open mode:
- A) For internal 24V power sources:
- Common Anode Connection, for example: Mitsubishi PLC.


• Common Cathode Connection, for example: Siemens PLC.

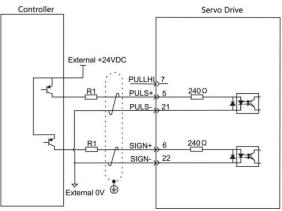

B) For external power supply:

Case 1: To use internal resistance of the drive (recommended).

• Common Anode Connection:



• Common Cathode Connection:



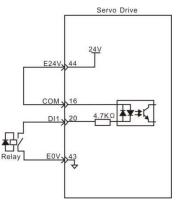
Case 2: To use external resistance of the drive.

• Common Anode Connection:

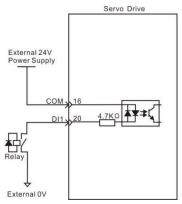
• Common Cathode Connection:

NOTE

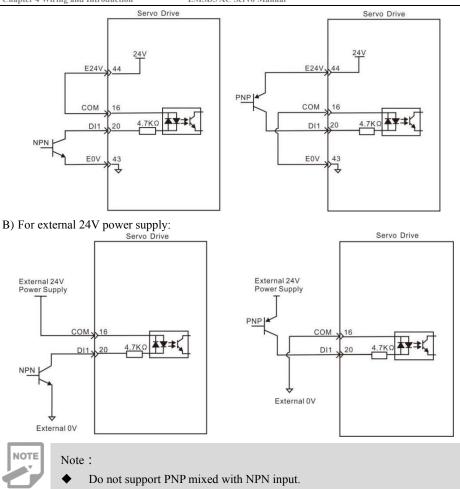
4.4.4 Digital Quantity Input And Output Signal


Signal Name		Pin	No.	E	To the day of the	
Signa	I Name	S	Н	Function	Introduction	
	DI1	20	20	Servo enable		
	DI2	4	4	Alarm clearance		
	DI3	19	19	CW drive inhibition	Optocoupler input and function can	
	DI4	3	3	CCW drive inhibition	be programmable. Defined by	
	DI5	-	18	Forward external torque limit	parameter P3 group(P3-0~P3-17). The input voltage of COM is both of	
	DI6	-	2	Reverse external torque limit	common positive and negative terminal. And input signal voltage is	
Digital	DI7	-	17	Zero-speed clamp	12~24V.	
Input	DI8	-	1	Zero instruction	In position mode (internal position	
	PULS-	21	21		mode) and non-position mode,	
	SIGN-	22	22	In position mode (internal	please connect 24 V to pin 7, DI5 to pin21, DI6 to pin 22. Or to connect 0 V to pin7, DI5 to 5 pin, DI6 to pin 6.	
	PULS+	5	5	position mode) and		
	SIGN+	6	6	non-position mode		
	PULLHI	7	7			
	СОМ	16	16	Common end of digital input signals		
	DO1+	31	31	S: Z signal output		
	DO1-	32	32	H: Servo ready		
	DO2+	33	33	Same Alarma autout		
	DO2-	34	34	Servo Alarm output		
	DO3+	35	35	S: Positioning completion	Photo isolation output. Function can	
Digital	DO3-	36	36	H: Zero speed output	be programmable.	
Output	DO4+	37	37	S: Magnetic brake	Defined by parameter P3 group	
	DO4-	38	38	H: Position arrival	(P3-20~P3-23).	
	DO5+	26	39	S: Z signal differential output		
	DO5-	10	40	H: Speed arrival		
	DO6+	-	41	Torque arrival		
	DO6-	-	42	Torque arrival		

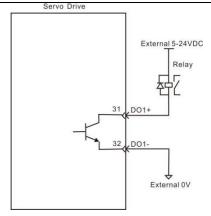
Internal	0V	23	23	Internal 0V	Internal 5V power output and the
Power Output	5V	8	8	Internal 5V	max output current 200ma。
Internal Isolated	E0V	43	43	Internal 0V	Internal isolated 24V power output and the voltage range is
Power Output	E24V	44	44	Internal 24V	20V~28V and max output current 100ma。

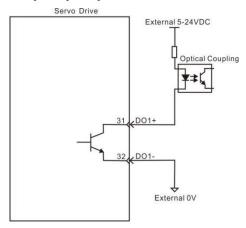

• Input Circuit Of Digital Quantity Diagram

For DI1 as an example(the DI1~DI8(S: DI1~DI4) interface circuit is the same):


- 1) When the upper device is relay output:
- A) For internal 24V power supply:

B) For external 24V power supply:


- ${\bf 2}$) When the upper device is collector open output:
- A) For internal 24V power supply:


• Output Circuit Of Digital Quantity Diagram

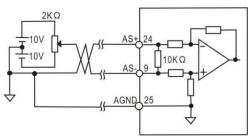
For DO1 as an example(the DO1~DO6(S: DO1~DO4) interface circuit is the same):

1) When the upper device is relay input:

2) When the upper device is optocoupler input:

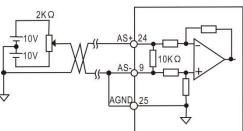
- Be sure to connect a continuation diode when the upper device is a relay, otherwise it may damage DO ports or cause strong signal interference.
- The maximum allowable voltage and current capacity of the optocoupler output circuit in the servo drive are as follows:
- Voltage : DC30V
- Current : DC50mA

4.4.5 Analog instruction signal


Signal	Signal Name		Function
Analog	AS+、AT+	24	
instruction	AS-、AT-	9	Analog velocity/torque input, range: -10V~+10V.
input	AGND	25	

Pulse Instruction Input Interface Diagram

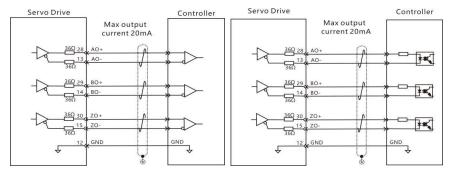
Two input types: differential (recommended) and single-end. Speed and torque share one analog input at range from -10V to +10V with resistance approximately at 10 K Ω . The existence of zero bias in the analog input is normal and can be compensated by parameters.


1) When it is analog differential input:

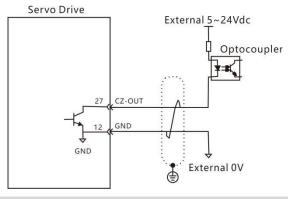
Servo Drive

2) When it is analog single-end input:

Servo Drive



4.4.6 Output Signal Of Encoder Frequency Division [EMSD5-A/BH]


Signal	Name	Pin No.	Function
	AO+	28	A phase fragmentary division output signal
	AO-	13	A phase frequency division output signal
	BO+	29	B phase frequency division output signal
	BO-	14	b phase nequency division output signal
General	ZO+	30	7 phase fragmeness division output signal
General	ZO-	15	Z phase frequency division output signal
	CZ-OUT	27	Z signal collector open circuit output
	GND	11,12	Internal digital signal ground
	5V	8	Internal 5V power and the max current output is
	0V	23	200ma.

	PEL	Metal Cover
--	-----	-------------

The output circuit of the encoder frequency division outputs a differential signal. Usually, it feedbacks signal when the position control system is formed for the upper device. At the upper device side, please use a differential or optocoupler to receive it and the maximum output current is 20 ma.

The output circuit of encoder Z phase division can realize through an open circuit signal of collector. Usually, it feedbacks signal when the position control system is formed for the upper device. On the upper device side, please use the photocoupler circuit, relay circuit or bus receiver circuit to receive it.

NOTE

Please connect the 5V ground of the upper device to the GND of the drive and use the twisted pair shield wire to reduce the noise interference.

4.4.7 Motor Brake Connection

The brake lock is the mechanism that prevents the servo motor shaft from moving when the servo drive is in non-enabled state, so that the motor keeps the position locked and the moving

part of the machinery will not move because of itself or external force.

Brake Signal Circuit Diagram

The brake connection of the input signal without polarity, but it needs users to prepare a 24V power supply. An example of the standard connection between the brake signal BK and the 24V power supply is shown below:

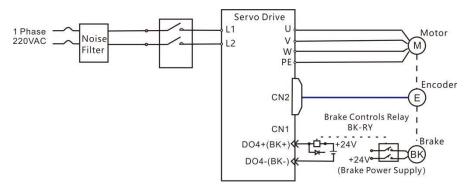


Fig.4-9 Brake Signal Connection

• The brake mechanism built into the servo motor is a fixed special mechanism of non-electric action type, which can not be used for braking purposes. Only when the servo motor is kept in a stop state can it work.

- The brake coil has no polarity.
- After the servo motor stops, the servo signal (Servo On) should be cut off.

• When the motor with the built-in brake is running, the brake may make a "click" sound, which has no effect on its function.

When the brake coil is electrified (open state of the brake), flux leakage may occur at the shaft end and other parts. Therefore the nearby devices might be interfered.

• It is forbidden to share the power supply with other electrical appliances, which is to prevent the voltage or current from decreasing resulting to the wrong work due to other electrical appliances.

• Above 0.5 mm² cable is recommended.

4.5 CN2 Encoder Signal Terminal

4.5.1 CN2A Signal Introduction

The encoder signal connector CN2 connects with the servo motor encoder. A 15 pins plug is used.

NOTE

Chapter 4 Wiring and Introduction

The pin chart is:

Fig.4-10 CN2A Incremental Encoder Signal Terminal

Signal Name		Pin No.	Introduction	
	5V	5	Use 5V power supply (Provided by servo driver).	
Encoder Signal Power		10	If the cable is longer than 20m and prevent encoder from voltage dropping down, it is better	
Supply	GND	15	to use multi wires or thick wires for power line and ground line.	
Encoder & Diseas Insust	A+	6	Compact with A phase sutput of speeder	
Encoder A Phase Input	A-	1	Connect with A phase output of encoder.	
	B+	7	Connect it Dataset to the former to	
Encoder B Phase Input	B-	2	Connect with B phase output of encoder.	
Encoder Z Phase Input	Z+	8	Connect with Z phase output of encoder.	
Encoder Z I nase input	Z-	3	Connect with Z phase output of encoder.	
Encoder II Dhece Input	U+	9	Connect with Unhage output of another	
Encoder U Phase Input	U-	4	Connect with U phase output of encoder.	
Encodor V Dhasa Input	V+	11	Connect with V phase output of anecdor	
Encoder V Phase Input	V-	12	Connect with V phase output of encoder.	
En es der W Dieses Lure (W+	13	Compact with Wishess systems of an as 1 a	
Encoder W Phase Input	W-	14	Connect with W phase output of encoder.	
Shielded Ground	Meta	l Cover	Connect with the shielded layer of the ecoder cable	

4.5.2 CN2/CN2B Signal Introduction

The encoder signal connector CN2 connects with the servo motor encoder. A 6 pins plug is used. The pin chart is:

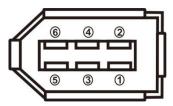


Fig.4-11 CN2/CN2B Encoder Signal Terminal

Chapter 4 Wiring and Introduction

EMSD5 AC Servo Manual

Signal Name		Pin No.	Function
bighur Parite	5V	5	Use 5V power supply (Provided by servo
Encoder Power Supply	0V	6	driver). If the cable is longer than 20m, in order to prevent encoder from voltage dropping down, it is better to use multi wires or thick wires for power line and ground line.
Absolute encoder communication positive end	SD+	1	Absolute encoder communication positive end
Absolute encoder communication negative end	SD-	2	Absolute encoder communication negative end
Null	NC	3	Reserve
Null	NC	4	Reserve
Shielded layer Meta		al cover	Connect to the shielded layer of the encoder cable

4.6 CN3 And CN4 Terminal Definition

4.6.1 Communication Terminal Wiring Diagram

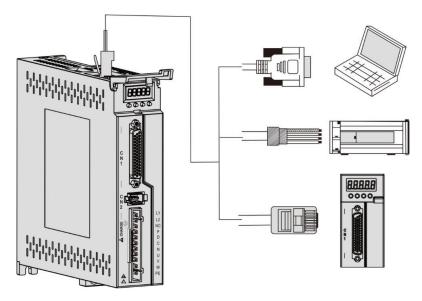


Fig.4-12 Communication Terminal Wiring

4.6.2 Communication port definition

Through the CN3 and CN4 ports on the drive, the communication can be established between the drive and PC、 PLC and other drives. The CN3 and CN4 pins are defined as follows:

EMSD5 AC Servo Manual

Terminal	CN3	Name	CN4	Name	Picture
1	NC	Null	NC	Null	
2	E0V	CAN ground	E0V	CAN ground	
2	CANH	CAN Bus	CANU	CAN Bus	
5	3 CAN H	communication	CAN H	communication	8
4	RS485 -	RS485	RS485 -	RS485	
5	RS485+	communication	RS485+	communication	
6	CAN L	CAN Bus	CAN L	CAN Bus	8
7	GND	485 ground	GND	485 ground	
8	NC	Null	NC	Null	

• It can connect PC or the upper controllers through a special serial port cable, and it is forbidden to plug with electric.

• It is recommended to use twisted pair or shielded wire, the length of the wire is less than 2 meters.

• Multi-drives series connected, CN3 connect with last CN4, and CN4 connect with next CN3.

• When using RS485 bus communication and RS485 ground signal of the upper controller is connected to the earth (PE), please connect PE terminal of the upper controller with the drive terminal properly. In this case, it is forbidden to connect RS485 ground signal of the upper controller with the drive RS485 ground signal (GND), otherwise the driver may be damaged.

4.6.3 RS485 Communication Connection Introduction

1.Connection With RS485 of A PLC

A connection cable between the driver and the PLC is as follows:

A

B

Fig.4-13 The Communication Cable Of Servo Drive With PLC

Table 4-2	Connection Between Servo Drive And PLC Communication Cabl
-----------	---

Drive RJ	45(A end)	PLC (B end)		
Signal Name Pin No.		Signal Name	Pin No.	
RS485+	5	RS485+	5	
RS485-	4	RS485-	4	

Chapter 4 Wiring and Introduction

GND	7	GND	7
PE (shielded layer)	Cover	PE (shielded layer)	Cover

2. RS485 Communication Parallel Connection Of Multi Drives

When using 485 communication network, the parallel connection of multi drives is as follows:

Fig.4-14 Parallel Cable Diagram Of Multi Drives

Table 4-3 Connection Between Multi Drives

Drive RJ45(A end)		PLC (B end)	
Signal Name	Pin No.	Signal Name	Pin No.
RS485+	5	RS485+	5
RS485-	4	RS485-	4
GND	7	GND	7
PE (shielded layer)	Cover	PE (shielded layer)	Cover

3. RS485 Communication Grounding Precaution

When using RS485 communication, the GND terminal of the upper device is connected with the GND terminal of the servo drive as shown in the following picture:

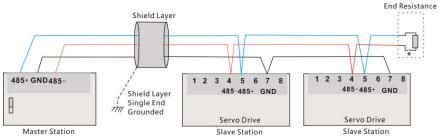
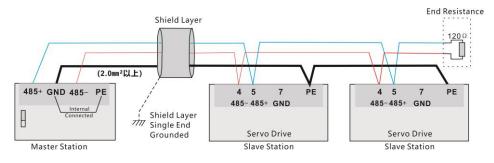



Fig.4-15 RS485 Communication Diagram

As shown in the picture below, when using RS485 communications, the ground signal of the upper device is connected with the earth:

NOTE

PLC is built in RS485 communication terminal resistor.

It is suggested that the shield layer should be ground at one end.

• Never connect the GND terminal of the upper device with the servo drive E0V terminal, otherwise the machine will be damaged.

4.7 Anti-jamming Countermeasures of Power Wiring

To suppress interference, please take the following measures:

- Instruction input cable length should be less than 3 meters, and encoder cable should be less than 20 meters.
- Recommend grounding cable over 2.0 mm²
- Please install a noise filter on the input side of the power cable to prevent radio frequency interference.
- To avoid electromagnetic interfering, the followingmethods can be used:
 - 1) Install the upper device and a noise filter near the servo drive.
 - 2) Install a surge suppressors on coils of relays, solenoids, electromagnetic contacts.
 - 3) Separate high and low voltage cables away minimum at 30 cm.
 - 4) Do not share a power supply with welding devices, discharge processing devices, etc. When there is a high frequency generator nearby, please install a noise filter on the input side of the power cable.

4.7.1 Wiring Examples Of Anti-Jamming And Ground Handling

1. Examples of anti-jamming wiring

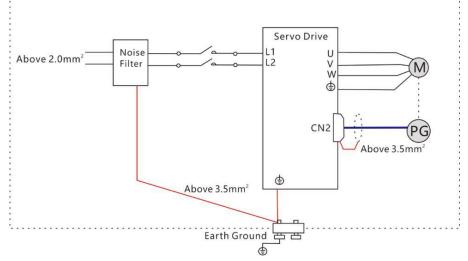


Fig.4-16 A Example Of Anti-Jamming Wiring

• The cable of the outer box connection used for grounding should be more than 3.5 mm² of coarse wire, and braided copper cables are recommended

2. Ground handling

NOTE

To avoid electromagnetic interference problems, please ground as below.

1) Grounding of servo motor housing

Please connect the grounding terminal of the servo motor with the grounding terminal PE of the servo driver and ground the PE terminal reliably to reduce the potential electromagnetic interference problem.

 Encoder Cable Shield Grounding Please ground both ends of shield layer of motor encoder cable.

4.7.2 How To Use A Noise Filter

In order to prevent the interference of the power cable and weaken the influence of the servo driver on other sensitive devices, please select a corresponding noise filter at the input end of power supply according to the input current. Meanwhile, please install the noise filter at the power cable of peripheral device if needed. Please observe the following precautions when installing and wiring the noise filter so as not to weaken the actual use effect of the filter.

• Please separate the input and output cables of the noise filter, and do not put both into the same pipe or tie them together.

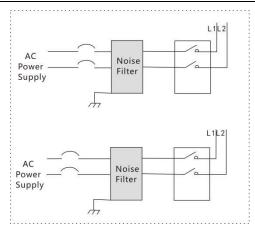


Fig.4-17 Example Diagram Of Noise Filter Input And Output Cables The ground wire of the noise filter is separated from its output power cord.

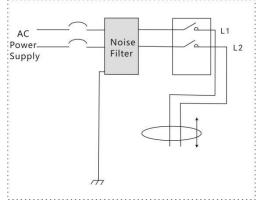


Fig.4-18 Diagram Of Separating Cables Between Ground And Output Line Of Noise Filter

 Noise filters need to use a thick cable as short as possible to ground separately, and do not share a ground wire with other grounding equipment.

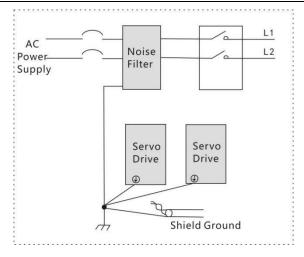


Fig.4-19 Single Point Grounding Diagram

• The ground handling of a noise filter installed in the control cabinet. When the noise filter and servo driver are installed in the same control cabinet, it is recommended that the filter and servo driver are fixed on the same metal plate. To ensure

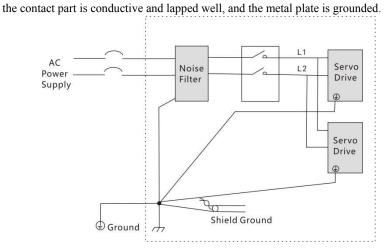


Fig.4-20 Ground Connection Handling Of Noise Filter

Chapter 5 Running Mode and Wiring

According to the command mode and operation characteristics of a servo drive, it can be divided into three operation modes: position control operation mode, speed control operation mode and torque control operation mode.

- The position control mode usually determines the displacement of the movement by the number of pulses, and the pulse frequency of the external input determines rotation speed. Because the position mode can strictly control the position and speed, it is generally used in the positioning device. It is the most popular control mode and mainly used in robot, table placement machine, carving and milling, CNC machines and so on.
- The speed control mode controls rotation speed through the given analog quantity, the given digital quantity and the given communication speed. It is mainly used in the constant-speed applications. For example, the upper computer adopts position control mode and the servo drive adopts speed control mode in application of carving and milling machines.
- The torque control mode controls torque through the given analog quantity, the given digital quantity and the given communication speed. It is mainly used in winding and unwinding devices which have strict requirements on the force of material, such as winding device or drawing fiber equipment and other tension control applications. The setting of torque should be changed at any time according to the radius of winding to ensure that the force of material will not change with the change of winding radius.

5.1 Position Control Mode

5.1.1 Position Mode Introduction

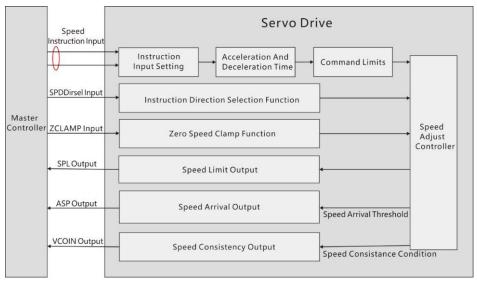


Fig.5-1 Position Mode Diagram

The main steps for position mode are as follows:

- Correctly connect the main circuit and the power supply, as well as the motor power cable and encoder cable. After powering on, the drive panel displays "r 0", which means that the drive power supply and encoder wiring are correct.
- 2) Pressing the keys for servo JOG trial operation to confirm whether the motor can run normally.
- 3) To connect the pulse direction input and pulse instruction input of the CN1 terminal as well as the required DI/DO signals, such as servo enable, alarm clearance, location completion signal, etc based on the figure Fig.5-2 as a reference.
- 4) Then to make some setting operations. DI/DO can be set according to actual situation.
- 5) For servo enable, the servo motor rotation is controlled by the position instruction from the upper computer. Firstly make the motor rotate at low speed, and confirm whether the rotation direction and electronic gear ratio are normal, then make the gain adjustment.

5.1.2 Position Mode Wiring

Fig.5-2 Position Mode Wiring

NOTE

The voltage of the internal 24V power supply ranges 20V~28V, and maximum operating current 100mA. If use a external 24V power supply, please connect the external 24V+ to pin16(COM) and the external 0V to pin43(E0V).

A power supply for DO output should be prepared by customers. The power ٠ ranges 5V~24V. The maximum allowable voltage is DC30V and current is 50mA.

5.1.3 Parameter Settings In Position Mode

Parameter	nd Smooth Filter Introduction	Danga	Default
r al anneter	Introduction	Range	Delaun
PA-4	Control mode	0	0
PA-9	Position Proportional Gain	1-1000	80
PA-19	Position Command Smooth Filter	0-1000×0.1ms	100
PA-100	Command Filter Selection	0-1	0

n And Smooth Filton

 Digital Input 				
Parameter	Introduction	Range	Default	
PA-11	Command pulses for each rotation	0-30000	10000	
PA-12	1 st numerator of electronic gear for position command pulse	1-32767	0	
PA-13	Denominator of electronic gear for position command pulse	1-32767	10000	
PA-14	Input mode of position command pulse	0-3	0	
PA-15	Reverse direction of position command pulse	0-1	0	
PA-59	The effective edge of command pulse	0-1	0	
PA-77	2 nd numerator of electronic gear for position pulse	1-32767	0	
PA-78	3 rd numerator of electronic gear for position pulse	1-32767	0	
PA-79	4 th numerator of electronic gear for position pulse	1-32767	0	
PA-80	Effective level of command direction signal	0-1	0	
PA-81	Command pulse(PULS)signal filter	0-15	4	
PA-82	Command pulse(SIGN)signal filter	0-15	4	

Digital Output(DO) •

Parameter	Introduction	Range	Default
PA-16	Range of positioning completion	0-3000 pulses	130
PA-17	Position deviation limit	0-30000×100 pulses	6000
PA-18	Position deviation error	0-1	0
PA-83	CWL,CCWL prohibited mode	0-1	0
PA-84	Hysteresis for position completion	0-32767	65
PA-85	Range for approach positioning	0-32767	6500
PA-86	Hysteresis for approach positioning	0-32767	650

Input And Output Terminals

Parameter	Introduction	Range	Default
PA-55	Effective level control word for input terminals	0000-1111	0000
PA-57	Effective level control word for output	0000-1111	0000
PA-58	Time constant of removing jitter for IO input terminal	1-20ms	2
P3-0	Digital Input DI1 function	0-99	1
P3-1	Digital Input DI2 function	0-99	2
P3-2	Digital Input DI3 function	0-99	3
P3-3	Digital Input DI4 function	0-99	4
P3-4	Digital Input DI5 function	0-99	5
P3-5	Digital Input DI6 function	0-99	6
P3-6	Digital Input DI7 function	0-99	7
P3-7	Digital Input DI8 function	0-99	8
P3-15	Force digital input valid1	0000000-11111111	0000000
P3-16	Force digital input valid2	0000000-11111111	0000000
P3-17	Force digital input valid3	0000000-11111111	0000000
P3-20	Digital Output DO1 function	0-99	18
P3-21	Digital Output DO2 function	0-99	3
P3-22	Digital Output DO3 function	0-99	5
P3-23	Digital Output DO4 function	0-99	8
P3-24	Digital Output DO5 function	0-99	6
P3-25	Digital Output DO6 function	0-99	7

• Position Command Introduction Of Internal Position Pr Mode

Pr position command source creates position command. Register takes the 8 groups of parameters (P4-2,P4-3)-(P4-23,P4-24). And then can choose one of 8 groups to be position command to match with 1/O(CN1 \$ POS0-POS2 and CTRG). As below table shows:

EMSD5 AC Servo Manual

CMD	POS2	POS1	POS0	CTRG	Parm	Induction	Moving Speed Register
D1	0	0	0	1	P4-2	Circle(+/-30000)	P4-4
P1	0	0	0	I	P4-3	Pulse(+/-max cnt)	(V1)
P2	0	0	1	†	P4-5	Circle(+/-30000)	P4-7
P2	0	0	1	1	P4- 6	Pulse(+/-max cnt)	(V2)
D2	0	1	0	^	P4-8	Circle(+/-30000)	P4-10
P3	0	1	0	1	P4-9	Pulse(+/-max cnt)	(V3)
D4	0	1	1	•	P4-11	Circle(+/-30000)	P4-13
P4	0	1	1	1	P4-12	Pulse(+/-max cnt)	(V4)
D5	1	0	0	•	P4-14	Circle(+/-30000)	P4-16
P5	1	0	0	1	P4-15	Pulse(+/-max cnt)	(V5)
DC	1	0	1	^	P4-17	Circle(+/-30000)	P4-19
P6	1	0	1	1	P4-18	Pulse(+/-max cnt)	(V6)
D7	1	1	0	^	P4-20	Circle(+/-30000)	P4-22
P7	1	1	0	1	P4-21	Pulse(+/-max cnt)	(V7)
DQ	1	1	1	†	P4-23	Circle(+/-30000)	P4-25
P8	1	1	1	1	P4-24	Pulse(+/-max cnt)	(V8)

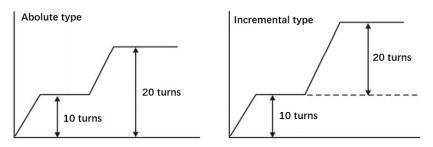
Note:

The state of POS0-2:

0: contact break (open)

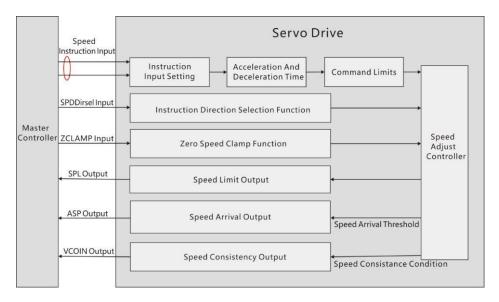
1: contact close

CTRG \uparrow : the moment from open (0) to close (1)


Max: the command pulses of the motor in one revolution

Absolute position register is broadly applied. User can easily complete

Periodicity actions by the above table. For example, the position command


P1=10 revolution, P2=20 revolution. P1 should be followed by P2.

Differences between P1 and P2 as below:

5.2 Speed Control Mode Wiring

5.2.1 Introduction

The main steps to use the speed control mode are as follows:

- correctly connect the servo main circuit and the power supply of the controller, as well as the motor cable and encoder cable. The servo panel displays"r 0" after powering on which means that the servo power supply and encoder connection are correct.
- Operate the servo JOG trial running mode through the panel keys to confirm whether the motor can run normally.
- To connect the required DI/DO signals in CN1 terminal, such as servo enable, alarm clearance, positioning completion signal, etc referring Fig.5-4.
- 4) To operate speed mode related setting. DI/DO are used to set according to your application.

5) To make the servo enabled and the servo motor rotation is controlled by the position instruction issued by the upper computer. First make the motor rotate at low speed, and confirm whether the rotation direction and electronic gear ratio are normal, then make the gain adjustment.

5.2.2 Speed Mode Wiring

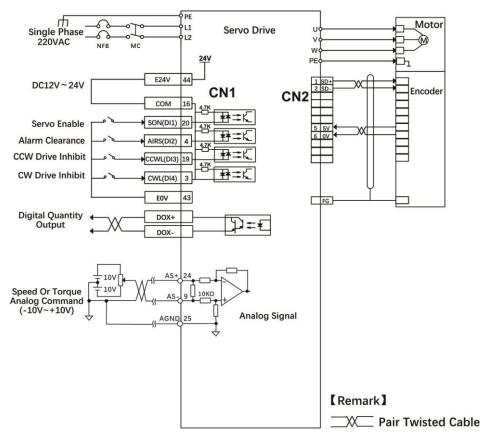
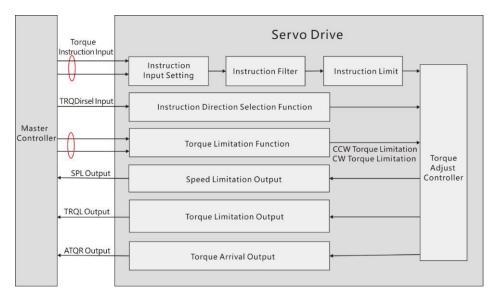


Fig.5-4 Speed Mode Wiring


5.2.3 Parameter Settings In Speed Mode

Parameter	Introduction	Range	Default
PA-4	Control Mode	1	0
PA-5	Speed Proportional Gain	5-2000Hz	150
PA-6	Speed Integral Constant	1-1000ms	75

Parameter	Introduction	Range	Default
PA-22	Internal And External Speed Instruction Selection	0-5	0
PA-24	Internal Speed 1	-6000-6000r/min	100
PA-25	Internal Speed 2	-6000-6000r/min	500
PA-26	Internal Speed 3	-6000-6000r/min	1000
PA-27	Internal Speed4	-6000-6000r/min	2000
PA-28	Arrival Speed	0-3000r/min	3000
PA-40	Acceleration Time Constant	1-10000ms	100
PA-41	Deceleration Time Constant	1-10000ms	100
PA-42	S Type Acceleration And Deceleration Time Constant	0-1000ms	0
PA-43	Gain Of Analog Speed Command	10-3000r/min/v	300
PA-44	Direction Of Analog Speed Command	0-1	0
PA-45	Zero Offset Compensation Of Analog Speed Command	-5000-5000	0
PA-46	Filter Of Analog Speed Command	1-300Hz	300
PA-75	Zero-speed Detection Point	0-1000r/min	10
PA-76	The Setting Value For Speed Consistent	0-1000r/min	10
PA-87	Hysteresis Of Arrival Speed	0-5000r/min	30
PA-88	Polarity Of Arrival Speed	0-1	0
PA-92	Hysteresis For Zero Speed Detection	0-1000r/min	5

5.3 Torque Control Mode

5.3.1 Introduction

The main steps to use the speed control mode are as follows:

- Correctly connect the servo main circuit and the power supply of the controller, as well as the motor cable and encoder cable. The servo panel displays"r 0" after powering on which means that the servo power supply and encoder connection are correct.
- 2) Operate the servo JOG trial running mode through the panel keys to confirm whether the motor can run normally.
- To connect the required DI/DO signals in CN1 terminal, such as servo enable, alarm clearance, positioning completion signal, etc referring Fig.5-6.
- 4) To operate torque mode related setting. DI/DO are used to set according to your application.
- 5) To make the servo enabled and the servo motor rotation is controlled by the position instruction issued by the upper computer. First make the motor rotate at low speed, and confirm whether the rotation direction and electronic gear ratio are normal, then make the gain adjustment.

5.3.2 Torque Mode Wiring

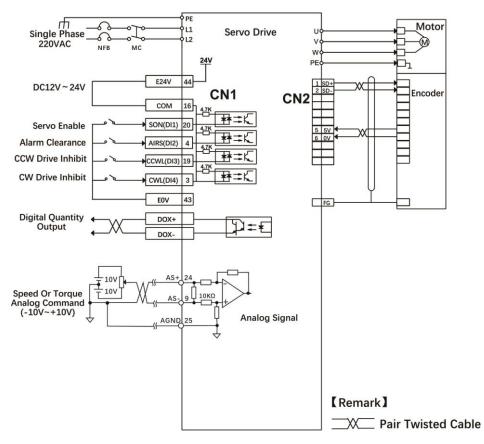


Fig.5-6 Torque Mode Wiring

5.3.3 Parameter Settings In Torque Mode

Parameter	Introduction	Range	Default
PA-4	Control mode	2	0
PA-29	Gain of analog torque command	Set by yourself	30
PA-32	Selection for internal and external torque command	0-2	0
PA-33	Direction of analog torque command	0	0
PA-39	Zero offset compensation of analog torque command	0	0

PA-50	Speed limit in torque control mode	Set by yourself	Rated Speed
PA-64	Internal torque 1	-300-300	0
PA-65	Internal torque 2	-300-300	0
PA-66	Internal torque 3	-300-300	0
PA-67	Internal torque 4	-300-300	0
PA-83	Inhibition method	0-1	0
PA-89	Arrival torque	-300%-300%	100
PA-90	Hysteresis of arrival torque	0%-300%	5
PA-91	Polarity of arrival torque	0-1	0

5.4 Origin Regression Function And Relevant Parameters Introduction

5.4.1 Relevant Parameter Settings

Parameter	Introduction	Value	Default
P4-32	Origin detector type or search direction setting	0-5	0
P4-33	Set the model of short distance movement to the origin	0-2	0
P4-34	Origin trigger start mode	0-2	0
P4-35	Origin stop mode setting	0-1	0
P4-36	The first stage of high speed origin regression speed setting	1-2000 r/min	1000
P4-37	The second stage of low speed origin regression speed setting	1-500 r/min	50
P4-38	Cycles of origin regression offset	+/-30000	0
P4-39	Pulses of origin regression offset	+/-max cnt	0

5.4.2 Origin Regression Mode Introduction(Must be in internal position mode)

A. Origin trigger start mode(P4-34)

The origin trigger start mode is divide into two kinds of origin regression function. One is automatic performing and another is contacting trigger. Details as below:

P4-34=0: close origin regression function. When set P4-34=0, the origin regression function can not work not matter what its setting value is.

P4-34=1: when the power is on, it will execute origin regression automatically. The function is available one when the power supply and servo on, which means it is unnecessary to repeat the operation when the servo works. It can save one input contact used to perform the origin regression.

P4-34=2: It triggers origin regression function through the input contact SHOM.

One of registers which are input pin function planning register must be set to SHOM trigger input function. The SHOM contact can be triggered at any time during the servo working and the function of origin regression can be performed.

B. Origin trigger start mode(P4-32)

The origin detector can use either the left limit switch or the right limit switch as the reference point for the origin. Or it can use extra detectors such as near type or light-gate type switch) as the reference. The Z pulse can be also set as a reference point when the servo motor moves in only one revolution.

P4-32=0: CW direction finds the origin and use CCWL limit as a rough reference point. When completing origin positioning, CCWL is limit input function. The subsequent retrigger will occur limit warning. When using limit input point as a rough reference point, recommended to set Z pulse(P4-33) as the precise mechanical origin.

P4-32=1: CCW direction finds the origin point and use CWL limit as a rough reference point. CWL is limit input function. The subsequent retrigger will occur limit warning. When using limit input point as a rough reference point, recommended to set Z pulse(P4-33) as the precise mechanical origin.

P4-32=2: CW direction finds the origin point and use ORGP(external detector input point) as the origin point reference. Then Z pulse of return search(P4-33=0) or do not return search(P4-33=1) can be set as the precise mechanical origin point. If do not use Z pulse as the mechanical origin point, the positive edge of ORGP can be also set as the mechanical origin point(P4-33=2).

P4-32=3: CCW direction finds the origin point and use ORGP(external detector input point) as the origin point reference. Then Z pulse of return search(P4-33=0) or do not return search(P4-33=1) can be set as the precise mechanical origin point. If do not use Z pulse as the mechanical origin point, the positive edge of ORGP can be also set as the mechanical origin point(P4-33=2).

P4-32=4: CW direction finds Z pulse origin point directly. This function is usually used for servo

motor motion control in only one rotation range and now any detector switches are unnecessary connected.

P4-32=5: CCW direction finds Z pulse origin point directly. This function is usually used for servo motor motion control in only one rotation range and now any detector switches are unnecessary connected.

C. Movement mode setting of short distance to the origin (P4-33)

P4-33=0: after the origin point has been found, the servo motor returns at the second stage of speed to search the nearest Z pulse as the mechanical origin point.

P4-33=1: after the origin point has been found, the servo motor changes to the second stage of speed to keep searching the nearest Z pulse as the mechanical origin.

P4-33=2: the rising edge of ORGP which was found is set as the mechanical origin point and stops according to deceleration, which is applied to P4-32=2 or 3. Or when found Z pulse, it stops according to deceleration, which is applied to P4-32=4 or 5. And the value of P4-32 for detecting origin detection is only applicable to 2 or 3. Under Z pulse origin point detecting, P4-32 is only applicable to 4 or Z pulse.

D. The mode setting of origin point stops (P4-35)

P4-35=0: after the origin detection has been completed, the motor slows down and is pulled back to the origin point. The motor slows down and stops when it gets the signal of origin detection at the second stage of speed. Then it moves back to the mechanical original position.

P4-35=1: after the origin detection has been completed, the motor decelerates and stops in the forward direction. The motor slows down and stops when it get the signal of origin detection at the second stage of speed. Then position overrun is no longer modified and the mechanical original position would not change even there are different position overruns.

5.5 Pre-operational Inspection

Before connecting the load, the motor should be run for checking.

- Check and ensure before running:
 - 1) There is no obvious damage to the appearance of the servo drive.
 - 2) Wiring terminals are insulated.
 - 3) There are no conductive objects, such as screws or metal plates, combustible objects inside the drive, and no conductive objects at the connection port.
 - 4) Do not place the servo drive or a external brake resistor on combustibles.
 - 5) Please wire correctly.

- Driver power supply, auxiliary power supply, grounding end and other wiring should be wired correctly. Each control signal cable connection should be correct. Each limit switch, protection signal have been correctly connected.
 - 1) Enabled switch in OFF state.
 - 2) Cut off power supply circuit and stop alarm circuit to maintain access ope.
 - 3) Servo driver applied voltage reference should be correct.
- Power the servo drive when the controller does not send a running command signal. Check and guarantee:
 - 1) The servo motor can turn normally without vibration or operating sound phenomenon.
 - 2) All parameters are set correctly, according to different mechanical characteristics and please do not over-set extreme parameters.
 - 3) Bus voltage indicator lamp and digital tube display are normal.

Chapter 6 Operation And Display

6.1 Drive Panel Introduction

6.1.1 Front Panel

The panel consists of 5 digital LED and 4 buttons including \blacktriangle , \bigtriangledown , \boxdot , SET to display all system status and set parameters. The operation is hierarchical. \checkmark button indicates "back" and SET button indicates "forward" while it also has the meaning of "Enter" and \checkmark button also has the meaning of "Cancel" and "Exit". \blacktriangle button indicates "Increasing" and \bigtriangledown button indicates "decreasing". If you press the \blacktriangle button or \bigtriangledown button and maintain it, you would get a duplicate result and stay longer, the repetition rate is higher.

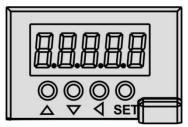


Fig.6-1 Drive Panel Display

6.1.2 Front Keys Introduction

Key	Name	Function			
	Increasing	Increase sequence number or value; Press down and			
	Increasing	hold to repeat increasing.			
	Delaine	Decrease sequence number or value; Press down and			
	Reducing	hold to repeat decreasing.			
	Exit	Menu exit; Cancel the operation			
SET	Confirm	Menu entered; Confirm the operation			

6.2 Main Menu

The first layer is the main menu and has 8 operating modes in total. Press \blacktriangle or \checkmark button to change the operation mode. Then press SET button to enter into the second layer and executes a concrete operation. Press \checkmark button returns to the main menu from the second layer.

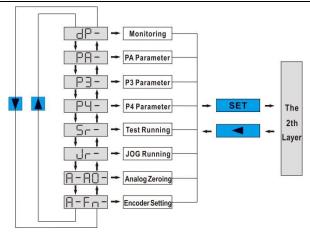


Fig.6-2 Main Menu

6.3 Steps To Set Parameters

Select "PA-" and press SET button to enter the status of parameter setting mode. And use \checkmark or \bigtriangledown to choose parameters and then press SET button to display the parameter value. You can modify the value with \blacktriangle or \bigtriangledown key. Press \blacktriangle key or \bigtriangledown key once, the parameter value increases or decreases by 1. Pressing and holding \blacktriangle or \bigtriangledown key can make the value increased or decreased continuously. After modifying the value of the parameter, please press SET button and when the LED flashes two times, it means the setting is completed. Finally please recharge, then the new parameter is effective.

6.4 Status Monitoring

In the first layer, select "DP--" and press SET button to enter into monitoring mode. There are 23 displays in total. Users select the desired display mode with \blacktriangle or \bigtriangledown key, and then press SET button to enter into the specific states.

Status	Operation	Example	Definition
P-SPd		r 1000	Motor speed:1000r / min
P-PoS	SET	04580	TI 104500
P-PoS.		P. 12	The current position:124580
P-CPo		C4581	D
P-CPo.		C. 12	Position command:124581

EMSD5 AC Servo Manual

Status	Operation	Example	Definition
P-EPo		EЧ	Position deviation:4 pulses
P-EPo.		E. O	r osmon deviation.4 puises
P-6-9		E 0.70	Motor torque 70%
P-		1 2.3	Motor current 2.3A
թ-նրե		Ըրե Օ	Control mode 0:position control
P- [S		r. 500	In speed mode, analog input speed: 500 r/min
P- CŁ		£ 0.50	In torque mode, analog input torque: 50%
P-APo		A3265	
P-APo.		A. O	Absolute rotor position:3265
P- In		∩ IIII	Input terminal
P-oUL		oUEiIII	Output terminal
P-UdC	SET	UC 33P	Line voltage:336V
P-Err		Егг Ч	No.4 alarm
		rL-on	Relay open
P- rL		rLoF	Relay Uncharged
		rl-Er	Relay alarming
		rn - on	Main circuit working normally
D		rnoF	Main circuit Uncharged
PT CO		rn-CH	Main circuit not enabled
		rn-Er	Main circuit alarming
		U-on	Line voltage normally
P- US		ULoU	Line voltage too low
		U-Err	Line voltage alarming
P- AS		43210	Aberbite meter meritien 97(542210
P- AS.		A.8765	Absolute motor position876543210

6.5 Analog Quantity Zeroing Adjustment

Using this function, the servo drive can check analog zero offset automatically and write the offset value into parameter PA-39 or PA-45. The operation has saved offset parameter to EEPROM, so it is unnecessary to write parameters again.

Firstly choose analog zero adjustment mode "A-A0" and press SET key to enter into the second layer. Select speed analog zeroing "a-spd" or torque analog zeroing "A-Trq" and then keep pressing SET key for more than 3s. When it displays "done", the activation is completed.

6.6 Encoder Selection

Select "F-res" to reset the encoder and make the encoder multi-circle information zeroing. By setting P3-36 parameter , the single-circle information can be cleared to achieve the purpose of setting the original point. Select" F-clr" to clear the encoder NO. 53 alarm caused by battery power down. After long press the SET key for more than 3 seconds and show "done", the operation is activate. After that, press the \blacksquare key to return to the upper menu.

6.7 How To Reset Default Parameters

To recover default parameters when:

The parameters are scrambled and the system can not work properly.

The steps to recover default parameters as follow:

- 1) Please connect the motor with the driver and power on. The driver will automatically read the motor parameters and match the motor model.
- 2) Set password (PA-0) to 385.
- 3) Do the followings:

Press the \checkmark key to return to the main menu and to select "PA-"with \blacktriangle or \checkmark key. Press the **SET** key to enter into the second layer and press the \checkmark or \checkmark key to make PA-0.Then press the **SET** key to enter into the third layer and set PA-0=385, pressing the **SET** key to save it. Next, press the \checkmark key to return to the "PA-" and set the PA-1=DEF-. Long press the **SET** key for 5 seconds and after the LED indicator lights flicker several times, the operation is completed Finally, it will work after repower on.

Chapter 7 Parameters

7.1 PA Group

No.	Name	Function	Rang	Default
PA-0	Password	1. User code:315.	0-9999	315
PA-0	Password	2. Motor model code:385.	0-9999	315
DA 1	Motor	The parameter is read-only and can not be modified.	(0.120	T.1.1. 7.1
PA-1	selection	The driver automatically identifies the motor model.	60-130	Table 7-1
DA 2	Software			
PA-2	Version	The software version can be read but can't be modified.		

Table7-1

Motor	Driver	Motor	Driver
EM-60S006N30		EM-130S040N25	
EM-60S013N30		EM-130S050N25	
EM-60S019N30		EM-130S060N25	
EM-60S032N30		EM-130S077N25	
EM-60S040N25		EM-130S100N10	
EM-110S020N30		EM-130S100N15	
EM-110S040N20		EM-130S100N20	
EM-110S040N30		EM-130S100N25	
EM-110S050N30		EM-130S150N15	
EM-110S060N20		EM-130S150N25	
EM-110S060N30			

No.	Name	Function	Rang	Default
PA-3	Initial display status	 0:Display motor speed. 1:Display the current position is 5-bit low. 2:Display the current position is 5-bit high. 3:Display position command. (command pulse accumulation) is 5-bit low. 4:Display position command. (command pulse accumulation) is 5-bit high. 5:Display position deviation is 5-bit low. 6:Display position deviation is 5-bit high. 7:Display motor torque. 8:Display motor current. 9:Display control mode. 10:Display temperature. 11:Display speed command 12:Display torque command. 	0-25	0

		EMSD5 AC Servo Manual	Chapter 7 Paramet	
No.	Name	Function	Rang	Default
		13:Display absolute position of the rotor in a roll		
		is 5-bit low.		
		14:Display absolute position of the rotor in a roll		
		is 5-bit high.		
		15:Display input terminal state.		
		16:Display output terminal state.		
		17:Display encoder input signal.		
		18:Display voltage value of main line of main		
		circuit.		
		19:Display alarming code.		
		20:Display logic chip version number.		
		21:Display the actuation state of the relay.		
		22:Display external voltage state.		
		23:Display external voltage state.		
		24:Absolute position 5-bit low.		
		25: Absolute position 5-bit high.		
		To set control method:		
		0: Position control mode		
		1: Speed control mode		
PA-4	Control mode	2: Torque control mode		
	selection	3: Position + speed control mode	0-6	0
	serverion	4: Position + torque control mode		
		5: Speed + torque control mode		
		6: Encoder zeroing mode		
		1.Set the proportional gain of speed loop.		
		2. The value is bigger, the gain is higher and		
		rigidity is stronger. The parameter value is set		
	Proportional	according to your exact servo driving system		
PA-5	gain of speed	model and the load. Generally, the greater the	5-2000Hz	150
	loop	load inertia, the bigger the value.		
		3.Please set a little high value if the system		
		condition does not generate oscillation.		
		1. To set the integral time constant of the speed loop		
		regulator.		
PA-6	Speed integral	2. The value is smaller, the integral speed is faster	1-1000ms	75
111 0	constant	and the servo rigidity is stronger. But if it is too	1 10001115	15
		small, it will happen over controlling.		
		1.To set the characters of torque command filter.		
		2.To suppress resonance generated by torque.		
		3. The value is smaller, the cut-off frequency is		
PA-7	Torque filter	lower and vibration with noise generated by the	20-500%	100
		motor is less. If the load inertia is great, reducing		
		the setting value is recommended. If the value is		

Chapter 7 Parameters EMSD5 AC Servo Manual							
No.	Name	Function	Rang	Default			
		 too small, it would lead to low response, which would result in shaking. 4. The value is bigger, the cut-off frequency is higher and the response frequency is quicker. If you need higher torque response frequency, it is recommended to increase the setting value. 					
PA-8	Speed detection filter	 To set the characters of speed detection filter. The value is smaller, the cut-off frequency is lower and noise from the motor is smaller. If the load inertia is great, reducing the setting value is recommended. If the value is too small, it would lead to low response, which would result in shaking. The value is bigger, the cut-off frequency is higher and the response frequency is quicker. If you need higher torque response frequency, it is recommended to increase the setting value. 	20-500%	100			
PA-9	Proportional gain of position loop	 To set the proportional gain of position loop. The value is bigger, the gain is higher and its rigidity is stronger. So the position lag is smaller under the same frequency command pulse condition. But if it is too big, it will happen oscillation. The parameter value is set according to your exact servo driving system model and the load. 	1-1000	80			
PA-10	Number of pulses output for each motor revolution	To set the number of pulses output by the encoder AB phase for each motor revolution.	0-20000	10000			
PA-11	Command pulses of each motor revolution	1.To set command pulses of each motor revolution.2.When it is set to 0, PA-12(numerator of electronic gear for position command pulses), PA-13(denominator of electronic gear for position command pulses) are valid.	0-30000	10000			
PA-12	1 st numerator of electronic gear for position command pulse	 Set the electric gear ratio for position command pulse. In position control mode, it is convenient to match all kinds of pulse source through set the parameter PA-12 and PA-13, which helps to reach ideal control resolution(angle/pulse). P×G=N×C×4 P: pulses of input command; G:electric gear ratio; 	0-32767	0			

			Å	7 Parameters	
Name				Rang	Default
	N:numbers of	of motor rota	tion ; C:solutions of		
	photoelectric	e encoder in j	per rotation, the default		
	value is 250	0.			
	4.For examp	le, input con	nmand pulse P is 6000,		
	servo motor	rotate a roll:			
	$G=(N \times C \times 4)$	/P=(1×2500>	×4)/6000=5/3, So PA-12		
	should be se	t to 5, PA-13	should be set to 3.		
	5.The numer	ator of electr	ronic gear for command		
	pulse is deci	ded by Gear	1 and Gear2. The		
	denominator	is decided b	y PA-13. The details as		
	following:				
	DI S	ignal	Deneminator		
	Gear 2	Gear 1	Denominator		
	0	0	1 st Numerator(PA-12)		
	0	1	2 nd Numerator(PA-77)		
	1	0	3 rd Numerator(PA-78)		
	1	1			
	Remark: 0=0	OFF. 1=ON.			
Denominator of					
	Refers to par	rameter PA-1	1-32767	10000	
—	1				
•	1.Set the inp	ut mode of p	osition command pulse.		
		-			
-	1: CCW puls	se/CW pulse.			
-	-	-	0-3	0	
	-				
pulse	-	-			
	direction. It	defines CCW	/ in counter clock wise		
	and CW in c	lock wise.			
Direction of					
command				0-1	0
pulses	1:Reverse po	osition comm	nana pulse.		
-	1.Setting the	pulse range	of positioning		
	-				
		•			
-				0-30000	120
					130
completion		· ·		Â	
	_				
Detection of				0-30000×1	
over-travel	2.In position	-	-		6000
	Denominator of position command pulse Input mode of position command pulse Direction of command	N:numbers of photoelectric value is 2500 4.For examp servo motor G=(N×C×4) should be se 5.The numer pulse is deci denominator following:Dise is deci denominator following:DI S Gear 2 0 1Denominator of position command pulseN:numbers of servo motor G=(N×C×4) should be se 5.The numer pulse is deci denominator 	NameFunNameN:numbers of motor rota photoelectric encoder in polar value is 2500.4.For example, input conservo motor rotate a roll: G=(N×C×4)/P=(1×2500) should be set to 5, PA-13 5.The numerator of elect pulse is decided by Gear denominator is decided by following:DI Signal Gear 2Gear 1 000110011101110111021101 <t< td=""><td>N:numbers of motor rotation ; C:solutions of photoelectric encoder in per rotation, the default value is 2500.4. For example, input command pulse P is 6000, servo motor rotate a roll: G=(N×C×4)/P=(1×2500×4)/6000=5/3, So PA-12 should be set to 5, PA-13 should be set to 3. 5. The numerator of electronic gear for command pulse is decided by Gear1 and Gear2. The denominator is decided by PA-13. The details as following:DI Signal Gear 2Denominator Gear 1001st Numerator(PA-12)012nd Numerator(PA-77)103rd Numerator(PA-78)114th Numerator(PA-79)Remark: 0=OFF, 1=ON.Refers to parameter PA-12.Denominator of position command pulseI.Set the input mode of position command pulse. 2. To set one of 4 input modes: 0: Pulse+Direction. 1: CCW pulse/CW pulse. 2: phase A and phase B orthogonal input. 3: Internal position input. Remark: CCW: observe from the motor axial direction. It defines CCW in counter clock wise and CW in clock wise.Direction of command pulses0:Normal direction. 1:Reverse position command pulse.The rang of positioning completion in position control mode.2. The drive judges whether it has finished positioning completion in position counter are less than or equal with the setting value, the COIN (positioning completion) of digital output(DO) is ON, or else OFF</td><td>NameFunctionRangN:numbers of motor rotation ; C:solutions of photoelectric encoder in per rotation, the default value is 2500. 4.For example, input command pulse P is 6000, servo motor rotate a roll: G=(N×C×4)/P=(1×2500×4)/6000=5/3, So PA-12 should be set to 5, PA-13 should be set to 3. 5.The numerator of electronic gear for command pulse is decided by Gear1 and Gear2. The denominator is decided by PA-13. The details as following:DI SignalDenominator 001010101010110101114th Numerator(PA-78)111112nd Numerator(PA-79)Remark: 0=OFF, 1=ON.Denominator of position command pulseInput mode of position command pulse1.Set the input mode of position command pulse. 2: phase A and phase B orthogonal input. 2: phase A and phase B orthogonal input. 3: Internal position input. Remark: CCW: observe from the motor axial direction. I: CCW pulse/CW pulse. 2: phase A and phase B orthogonal input. 3: Internal position command pulse.Direction of command pulses0.Normal direction. 1:Reverse position command pulse.Direction of constrain quicks0.Normal direction. 1:Reverse position command pulse.Direction of positioning completion in position control mode. 2.The drive judges whether it has finished positioning completion in position control mode. 2.The drive judges whether it has finished positioning completion position deviation counter </td></t<>	N:numbers of motor rotation ; C:solutions of photoelectric encoder in per rotation, the default value is 2500.4. For example, input command pulse P is 6000, servo motor rotate a roll: G=(N×C×4)/P=(1×2500×4)/6000=5/3, So PA-12 should be set to 5, PA-13 should be set to 3. 5. The numerator of electronic gear for command pulse is decided by Gear1 and Gear2. The denominator is decided by PA-13. The details as following:DI Signal Gear 2Denominator Gear 1001st Numerator(PA-12)012nd Numerator(PA-77)103rd Numerator(PA-78)114th Numerator(PA-79)Remark: 0=OFF, 1=ON.Refers to parameter PA-12.Denominator of position command pulseI.Set the input mode of position command pulse. 2. To set one of 4 input modes: 0: Pulse+Direction. 1: CCW pulse/CW pulse. 2: phase A and phase B orthogonal input. 3: Internal position input. Remark: CCW: observe from the motor axial direction. It defines CCW in counter clock wise and CW in clock wise.Direction of command pulses0:Normal direction. 1:Reverse position command pulse.The rang of positioning completion in position control mode.2. The drive judges whether it has finished positioning completion in position counter are less than or equal with the setting value, the COIN (positioning completion) of digital output(DO) is ON, or else OFF	NameFunctionRangN:numbers of motor rotation ; C:solutions of photoelectric encoder in per rotation, the default value is 2500. 4.For example, input command pulse P is 6000, servo motor rotate a roll: G=(N×C×4)/P=(1×2500×4)/6000=5/3, So PA-12 should be set to 5, PA-13 should be set to 3. 5.The numerator of electronic gear for command pulse is decided by Gear1 and Gear2. The denominator is decided by PA-13. The details as following:DI SignalDenominator 001010101010110101114th Numerator(PA-78)111112nd Numerator(PA-79)Remark: 0=OFF, 1=ON.Denominator of position command pulseInput mode of position command pulse1.Set the input mode of position command pulse. 2: phase A and phase B orthogonal input. 2: phase A and phase B orthogonal input. 3: Internal position input. Remark: CCW: observe from the motor axial direction. I: CCW pulse/CW pulse. 2: phase A and phase B orthogonal input. 3: Internal position command pulse.Direction of command pulses0.Normal direction. 1:Reverse position command pulse.Direction of constrain quicks0.Normal direction. 1:Reverse position command pulse.Direction of positioning completion in position control mode. 2.The drive judges whether it has finished positioning completion in position control mode. 2.The drive judges whether it has finished positioning completion position deviation counter

Chapter 7 Parameters EMSD5 AC Servo Manual							
No.	Name	Function	Rang	Default			
	range	deviation counter is over than the setting value, the drive will alarm.					
PA-18	Invalid over-travel error	Set to: 0: The alarming detection of over travel is valid. 1: The alarming detection of over travel is invalid, and it stops detecting the error .	0-1	0			
PA-19	Position command smooth filter	 To filter the instruction pulse with exponential acceleration and deceleration, and the value represents the time constant. The filter does not lose input pulses, but would occur command delay . The filter applies in PC controller without acceleration and deceleration function. The electronic gear frequency is a little big(>10). The command frequency is a little low. When the motor runs, there are step jumps and unsmooth. 	0-1000×0. 1ms	100			
PA-20	Invalid input of drive inhibition	To set: 0: CCW drive inhibition or CW drive inhibition is effective. If the switch of CCW drive inhibition is ON, CCW drive is permitted. If the switch of CCW drive inhibition is OFF, CCW torque keeps 0. The same as CW drive inhibition. If both CCW and CW drive inhibition are OFF, it will come to error alarms of drive inhibition input. 1: Cancel CCW or CW drive inhibition. No matter what state of the switch of CCW or CW drive inhibition is, CCW or CW drive is allowed.Meanwhile, if the switches of CCW and CW drive inhibition are OFF, it will still not alarm	0-1	1			
PA-21	JOG speed	Set the running speed of JOG operating.	0-6000 r/min	100			
PA-22	The source of speed command	In speed control mode, it sets the source of speed command. It means: 0: Analog Terminal AS+, AS- input analog speed command. 1:Internal speed command is decided by SP1 and SP2 of digital input(DI): DI Signal Speed Command	0-5	0			

No.	Name		Function			Rang	Default
110.	Ttame		SP2	SP1		Trang	Delault
			0	0	Internal Speed1(PA-24)		
			0	1	Internal Speed2(PA-25)		
			1	0	Internal Speed2(PA-26)		
			1	1	Internal Speed2(PA-27)		
		Not	e: 1=0N	-			
					mmand+internal speed		
			imand:	peeu co	minand internal speed		
		com		ignal			
			SP2	SP1	Speed Command		
			0	0	Analog Speed Command		
			-		Analog Speed Command		
			0	1	Internal Speed2(PA-25)		
			1	0	Internal Speed2(PA-26)		
		2. 14	1	1	Internal Speed2(PA-27)		
			-		nand, if carries out JOG		
		<u> </u>			led to set.		
					command, if carries out Sr to set the parameter.		
		^			ols JOG operation.		
					ed of the ac motor.		
	Highest speed		-	-	with rotating direction.	0-6000	
PA-23	limit			ting value is beyond of rated speed, the		r/min	5000
	mm		real highest speed is set as the rated speed.				
			et the int				
	Internal speed			-		-6000- 6000	
PA-24	selection 1		2.In speed control mode(PA-22=0), when SC1 and SC2 are OFF, internal speed 1 is the speed				100
	Selection 1		mand.	. 011,1	niema speca i is ale speca	r/min	
			et the int	ernal si	peed 2.		
	Internal speed			-	mode(PA-22=0), when SC1 is	-6000-	
PA-25	selection 2		-		FF, internal speed 2 is the	6000	500
			ed comn		, <u>1</u>	r/min	
			et the int		peed 3.		
D4 04	Internal speed				node(PA-22=0), when SC1 is	-6000-	1000
PA-26	selection 3				DN, internal speed 3 is the	6000	1000
		spee	ed comn	nand.	-	r/min	
		1.Se	et the int	ternal sp	peed 4.	(000	
DA 27	Internal speed	2.In	speed c	ontrol 1	node(PA-22=0), when SC1	-6000-	2000
PA-27	selection 4	and	SC2 are	e ON, ir	nternal speed 4 is the speed	6000 r/min	2000
			mand.			r/min	
		1.Se	t the dete	ection tin	ming of the speed arrival output.	0.2000	
PA-28	Speed arrival	Whe	en the set	rvomoto	r speed surpasses this parameter,	0-3000 r/min	3000
		the c	ligital ou	tput (D	O) ASP (arrival speed) is ON,	r/min	

Chapter /	Parameters	EMSD5 AC Servo Manual		
No.	Name	Function	Rang	Default
No.	Name	otherwise is OFF. 2. The comparator has hysteresis function set by PA87. Detection is associated with 10 r/min hysteresis. Speed If the speed PA28 +10 -(PA28 +10) -(PA28 +10)	Rang	Default
		1 >0 Only detect CCW speed >0 Only detect CW speed		
PA-29	Gain of analog quantity torque command	 Set the proportion for input voltage of analog torque and the actual motor running torque. The setting value unit is 0.1v/100%. The default value is 30, corresponding to 3v/100%, while it means if the input voltage is 3V, it would generate 100% rated torque. 	10-100(0. 1v/100%)	30
PA-30	The alarm value of torque overload	1. The value is the percentage of rated torque. The limit is independent to direction and CW or CCW direction is protected. 2. When PA-31>9, motor torque>PA-30 and duration>PA-31, the drive alarms and the code is Err-29. The motor stops working. It must repower on after clearing errors.	1-300	300
PA-31	The detection time for torque overload	 The detection time for torque overload, unit:ms. Detection time=PA-31×0.1. When set to 0~9, the function of torque overload alarming is prohibited. Generally,the value is set as 0. 	0-32767	0
PA-32	The source of torque command	In torque control mode, it sets the source of torque command. It means: 0:Analog torque command, it inputs by analog terminal AS+ and AS 1:Internal torque command, it is decided by TRO1 and TRQ2 of digital input(DI): DI Signal TRQ2 TRQ1 Speed Command 0 0 Internal Torque1(PA-64) 0 1 Internal Torque2(PA-65) 1 0 Internal Torque3(PA-66) 1 1 Internal Torque4(PA-67)	0-1	0

No.	Name	EMSD5 AC Servo Manual Function		7 Parameters
INO.	Iname		Rang	Delault
		Note: 0=OFF, 1=ON		
		2:Analog torque command+internal torque command:		
		DI Signal Speed Command		
		TRQ2 TRQ1 Speed command		
		0 0 Analog torque command		
		0 1 Internal Torque2(PA-65)		
		1 0 Internal Torque3(PA-66)		
		1 1 Internal Torque4(PA-67)		
	The input	Reverse the input polarity of analog torque.		
PA-33	direction of		0-1	0
111 55	analog torque		01	Ū
	command			
		1. The setting value is the percentage of rated		
		torque.For example, it is set to 2 times of the rated		
	Internal CCW	torque, the value is 200.		
PA-34	torque limit	2. At any time, this restriction is valid.	0-300%	300
		3. If the setting value is over than the max		
		overload capacity, the actual torque limit is the		
		max overload capacity that is permitted.		
		1. The setting value is the percentage of rated		
	Internal CW torque limit	torque.For example, it is set to 2 times of the rated		
		torque, the value is 200.		
PA-35		2. At any time, this restriction is valid.	-300-0%	-300
		3. If the setting value is over than the max		
		overload capacity, the actual torque limit is the		
		max overload capacity that is permitted.		
	External CCW torque limit	1. The setting value is the percentage of rated		
		torque, for example, it is set to 1 time of rated		
		torque, the value is 100.		
		2.Only when the input terminal(FIL) of CCW		
PA-36		torque limit is ON is it valid.	0-300%	100
		3. When the limit is valid, the actual torque limit is		
		the Minimum value of max overload		
		capacity ,internal CCW torque limit and external		
		CCW torque limit.		
	External CW torque limit	Set external torque limit of the motor CW		
		direction.		
		1. The setting value is the percentage of rated		
$P\Delta = 3/$		torque, for example, it is set to 1 time of rated	-300-0%	-100
		torque, the value is -100.		
		2.Only when the input terminal(RIL) of CW		
		torque limit is ON is it valid.		

Chapter 7 Parameters EMSD5 AC Servo Manual						
No.	Name	Function	Rang	Default		
		3.When the limit is valid, the actual torque limit is the Minimum value of max overload capacity ,internal CCW torque limit and external CCW torque limit.				
PA-38	Temperature alarm	Set drive temperature up to max limitation.	200-1350	-		
PA-39	Zero offset compensation of analog torque command	Make an offset adjustment for analog torque command with this parameter.	-2000- 2000	0		
PA-40	Acceleration time constant	The value means the motor of acceleration time from 0r/min to 1000r/min. 1.Linear acceleration and deceleration characteristics. 2.It only applies in speed control mode and internal position control mode, and other modes are invalid.	1-10000ms	100		
PA-41	Deceleration time constant	The value means the deceleration time of the motor from 1000r/min to 0r/min. 1.Linear acceleration and deceleration characteristics. 2.It only applies in speed control mode and internal position control mode, while other modes are invalid. 3.This parameter should be set to 0 if the drive is used in combination with an external position loop.	1-10000ms	100		
PA-42	S type acceleration and deceleration time constant	It makes the motor start and stop working stably and sets a part of time of S type acceleration and deceleration curve.	0-1000ms	0		
PA-43	Gain of analog speed command	speed speed and actual motor running speed.		300		
PA-44	Direction of analog speed command	Reverse the input polarity of analog speed. 1. Set to 0 and analog speed command is positive, the speed direction is CCW. 2. Set to 1 and analog speed command is positive, the speed direction is CW.	0-1	0		
PA-45	Zero offset compensation of analog speed command	Make an offset adjustment for analog speed command with this parameter.	-5000- 5000	0		
PA-46	Filter of analog speed command	1.The input low pass filter of analog speed 2.The setting value is bigger, the response frequency is quicker to speed input analog	1-1000Hz	300		

		EMSD5 AC Servo Manual	Chapter 7 Parameter	
No.	Name			Default
		quantity and the influence of signal noise is		
		louder.		
		1.It defines the delay time from BRK=ON and		
	0	BRK=OFF to the motor current cutting off when	0-200×10 ms	
PA-47	mechanical	the motor stops rotating.		0
		2.To avoid a small displacement or working drop		
	motor stops	of the motor, the parameter should not be less		
		than the delay time of mechanical braking.		
		1.It defines the delay time from the motor current		
		cutting off to BRK=ON and BRK=OFF when		50
	The setting of	the motor rotates.		
DA 40	mechanical	2. To avoid a damage to the brake, the parameter	0-200×10	
PA-48	brake when the	makes the motor slow down and then makes the mechanical brake work.	ms	
	motor rotates	3. The actual action time is the time it takes to		
		drop from PA-48 or current motor speed to		
		PA-49, and taking the minimum value.		
		1. It defines the speed value from motor current		
		cut-off to mechanical brake action (output		
		terminal BRK from ON to OFF) during motor		100
PA-49		working.	0-3000r/m	
111 12		2. The actual action time is the time it takes to		
		drop from PA-48 or current motor speed to		
		PA-49, and taking the minimum value.		
	Speed limit in	1:In torque control mode, the motor running		
PA-50	torque control	speed is limited in the range of this parameter.	0-5000r/m	3000
	mode	2:It can prevent over speed in light load.	in	
	Servo force enable	To set :	0-1	0
DA 52		0: The enable signal is controlled by SON of		
PA-53		digital input(DI).		
		1: Software force to servo on.		
	The delay			
PA-54	closing time	It defines the time to delay cutting off the motor	0-30000ms	0
1A-34	of servo	current after the servo enable signal is turned off.	0-30000ms	0
	enable			
PA-55		1.To reverse the input terminals. For unreversed		
		terminals, it is valid when the switch is closed,		
	Effective level	while it is invalid when the switch is open. For		
	control word	reversed terminals, it is invalid when the switch is	0000-1111	0000
	of input	closed, while it is valid when the switch is open.		
	terminals	2.Represented by a binary digit of 4 bits. If it is 0,		
		it means the input terminal dose not reverse.		
		While it is 1, it means the terminal reverses.		

Chapter 7 Parameters EMSD5 AC Servo Manual							
No.	Name		Fun	Rang	Default		
		The binary d	ligit represer	nts the input	terminals as		
		following:					
		3	2	1	0		
		DI4	DI3	DI2	DI1		
		0: high level	is active.	•			
		1: low level					
			the output to	erminals. For	r reversed		
		terminals, the definitions of breaking over and					
		cut-off is co		-			
		2.Represente	ed by a binar	y digit of 4 l	oits. If it is 0,		
	Effective level	it means the	input termin	al dose not i	everse.		
D	control word	While it is 1	-				0000
PA-57	of output	The binary d	ligit represer	nts the input	terminals as	0000-1111	
	terminals	following:		_			
		3	2	1	0		
		DO4	DO3	DO2	DO1		
		0: high level	is active.				
		1: low level	is active.				
		1.Set the ren	noving jitter	filter time fo	or input		
	Removing	terminal.		1-20ms	2		
	jitter time	2.The value	is smaller, th				
PA-58	constant of	frequency is	quicker.				
	I/O input	3.The value	is bigger, the				
	terminal	performance			er, but the		
		response fre	quency beco				
	Effective	Set to:					
PA-59	command	0: the rising	edge is effect	ctive.		0-1	0
	pulse edge	1:the falling	edge is effect	ctive.			
	Soft reset	Set to:				0-1	0
PA-60		0:Soft reset					
		1:Soft reset is	s effective and	the system w	vill restart.		
	System alarm clear	Set to:					
PA-61		0: System al				0-1	0
			arm clear is	effective.			
	Encoder selection	Set to:					
		0: increment		encoder.			
		1:save-line e					
PA-62		4:single-turr				0-5	Decided
		5:multi-turn					by motor
			•		encoder to a		
		save-line en	coder, please	e set PA61=1	and repower		
		on.					
PA-63	Load inertia	Set the load	inertia ratio	of the motor	rotating	1-500	100

No.	Name	Function	Rang	Default
1.00	ratio	inertia.	Trung	Deluult
	Tutio	The setting value=((load inertia+rotating inertia) / rotating inertia)×100.		
PA-64	Internal Torque 1	In torque control mode(PA-4=2), when TRQ1=OFF, TRQ2=OFF, internal torque 1 is as the torque command.	-300-300	0
PA-65	Internal Torque 2 In torque control mode(PA-4=2), when TRQ1=ON, TRQ2=OFF, internal torque 2 is as the torque command.		-300-300	0
PA-66	Internal Torque 3	TRO1=OFF TRO2=ON internal forgue 3 is as 1.		0
PA-67	Internal Torque 4	In torque control mode(PA-4=2), when TRQ1=ON, TRQ2=ON internal torque 4 is as the torque command.	-300-300	0
PA-71	MODBUS ID NO. MODBUS communication address.		1-254	1
PA-72	MODBUS communicatio n baud rate	MODBUS communication baud rate.	48-1152×1 00	96
PA-73	MODBUS protocol selection	 0: 8, N, 2 (MODBUS, RTU) 1: 8, E, 1 (MODBUS, RTU) 2: 8, O, 1 (MODBUS, RTU) The parameter decide the communication protocol. Value 8 represents the transmitted data is 8 bits; N,E,O indicate odd or even: N: do not use this bit. E: it represents 1 is even bit. O: it represents 1 is odd bit. Value 1 or 2 indicates communication of 1 bit or 2 bits. 	0-3	0
PA-74	Communicatio When communication happens error, if choose:		0-1	0
PA-75	Zero-speed detection point	1. If the motor running speed is less than the value of this parameter, the ZSP(zero speed) of digital output(DO) is ON, or else OFF. 2. If ZCLAMP of digital input(DI) is ON and speed command is less than the value of this parameter, the value of speed command is forced to be zero.	0-1000 r/min	10
PA-76	Speed coincidence	When the difference between the actual speed and the instruction speed is less than this setting, the		10

Chapter 7	Parameters				
No.	Name	Function	Rang	Default	
	range	UCO2N(speed coincidence) is ON, otherwise OFF.			
PA-77	2 nd numerator of electronic gear for position command pulse	Refers to parameter PA-12.	0-32767	0	
PA-78	3 rd numerator of electronic gear for position command pulse	Refers to parameter PA-12.	0-32767	0	
PA-79	4 th numerator of electronic gear for position command pulse	Refers to parameter PA-12.	0-32767	0	
PA-80	Effective level of command direction signal	Set to: 0: High level is positive direction. 1: Low level is positive direction.	0-1	0	
PA-81	PULS signal filter of command pulse	 To filter the input PULS signal. The default value is the max pulse input frequency: 500khz(kpps). The value is bigger, the max input frequency is slower. To filter the noise from the signal line in order to avoid incorrect counting happening. If it goes wrong due to the incorrect counting, you can increase the value of this parameter properly. After editing this parameter, please save it and recharge. Then it is effective. 	0-15	4	
PA-82	SIGN signal filter of command pulse	 To filtering the input SIGN signal. The default value is the max pulse input frequency: 500khz(kpps) The value is bigger, the max input frequency is slower. To filter the noise from the signal line in order to avoid incorrect counting happening. If it goes wrong due to the incorrect counting, you can increase the value of this parameter properly. After edited this parameter, must save it and 	0-15	4	

NT	NI.	EMSD5 AC Servo Manual	D	D.C.F
No.	Name	Function	Rang	Default
PA-83	CWL/CCWL inhibit way	recharge. Then it is effective. When the machine touches the mechanical limit switch and strike CW/CCW limit, you can choose the following methods to prohibit with this parameters. 0: To limit the torque in this direction to be 0. 1: To prohibit the input pulse in this direction.	0-1	0
PA-84	Hysteresis for positioning completion	 Set pulse completion range in position control mode. When the number of remaining pulses in the position deviation counter is less than or equal to the setting value of this parameter, the digital output of COIN(position completion) is ON, otherwise OFF. Comparator has the function of hysteresis, which is set by PA85. 	0-32767 Pulses	65
PA-85	The range of near position	 To set the pulse range of near position under the position control mode. When the pulse number in position deviation counter is smaller than or equal to the setting value of this parameter, the digital output (DO) NEAR(approach position) is ON, otherwise is OFF. The comparator has hysteresis function set by PA86. Use this function in case that in near positioning, the host controller is accepting the NEAR signal to carry on the preparation to the next step. In general, this parameter value should be bigger than PA-16. 	0-32767 Pulses	6500
PA-86	Hysteresis for approach positioning	Refer to parameter PA85.	0-32767 Pulses	650
PA-87	Hysteresis of arrival speed	1. When the motor speed exceeds this parameter, the digital output ASP (speed arrival) is ON, otherwise OFF. 2. The comparator has hysteresis function. 3. It has polarity setting function: PA88 PA-28 Comparator 0 >0 Speed without direction 1 >0 <0	0-5000 r/min	30
PA-88	Polarity of arrival speed	Refers to parameter PA87.	0-1	0

Chapter 7	apter 7 Parameters EMSD5 AC Servo Manual						
No.	Name	Function	Rang	Default			
PA-89	Arrival torque	1. When the motor torque exceeds this parameter digital output ATRQ (torque arrival) is ON, otherwise OFF. 2. The comparator has hysteresis function set PA-90. 3. It has polarity setting function: PA-91 PA-89 Comparator 0 >0 Torque without direction 1 >0 20 Only detect positive speed 1 <0		100			
PA-90	Hysteresis of arrival torque	1.If the motor torque is bigger than PA-90, the ATRQ(torque arrival) of digital output(DO) i ON, otherwise it is OFF. 2.The comparator has hysteresis function set by PA-93. It also has polarity setting function: PA-91 PA-89 Comparator 0 >0 Torque without direction 1 >0 2.0 Only detect positive speed 1 <0	s 0. 0-300%	5			
PA-91	Polarity of arrival torque	1. If the motor torque is bigger than PA-91, the ATRQ(torque arrival) of digital output(DO) i ON, otherwise it is OFF.2. The comparator has hysteresis function and set by PA-90.3. It also has polarity setting function:PA-91PA-89Comparator0>0Torque without direction1>0<0	s	0			
PA-92	Hysteresis of zero speed detection	 The motor speed is lower than the value of parameter, ZSP(zero speed) of digital outp ON, or else OFF. The comparator has hysteresis function. 		5			
PA-94	The delay time of brake on	This parameter defines the delay time from th servomotor energized until the action(the dig output(DO) BRK is ON.		0			
PA-95	Motor encoder Resolution	Motor encoder resolution, $2^{17}=13107$ and the setting value 17. Please modify it carefully.	10-32	17			
PA-96	Motor polarity	It is motor polarity. Please modify it carefully	. 1-360	5			
PA-97	Motor zero	Encoder zero bit and motor zero bias angle, w is etermined by the motor.		1800			
	Maximum	Maximum duty cycle on brake	5-90	50			

No.	Name	Function	Rang	Default
	duty cycle on brake			
PA-100	Filter selection of position loop	0:digital moving average filter. 1:index smooth filter.	0-1	0
PA-101	Feed forward gain of position loop	Feed forward can reduce the position tracking error in position control. When set to 100, the position tracking error is always 0 under any frequency of instruction pulses.	0-100	0
PA-102	Filter time constant of position loop feed forward	It is position loop feedforward filter to increase the stability of feedforward controlling.	20-500	100
PA-103	Z Signal Output Pulse Width	Z Signal Output Pulse Width	1-200	50
PA-104	RS Output Function Selection	To set: 0: It can use RS485 communication function. 1: No RS485 communication function, but it can add a programmable output port which can output differential signal(Z signal as default).	0-1	0
PA-107	Zero offset angle of saving-line encoder	When PA-62=1 and a saving-line motor is used, this parameter determines the zero-point offset angle of the encoder.	0-3600	1800

7.2 P3 Group Parameters For Multifunctional Terminals

7.2.1 Parameter Table

EMSD5 servo drives have 4 input terminals and 4 output terminals. The definition values can be set by P3 group parameters.(Low level is effective as default for input terminals).

Parameter	Name	Range	Default
P3-0	Digital Input DI1 Function	0-99	1
P3-1	Digital Input DI2 Function	0-99	2
P3-2	Digital Input DI3 Function	0-99	3
P3-3	Digital Input DI4 Function	0-99	4
P3-4	Digital Input DI5 Function	0-99	5[0]
P3-5	Digital Input DI6 Function	0-99	6[0]
P3-6	Digital Input DI7 Function	0-99	7[0]
P3-7	Digital Input DI8 Function	0-99	8[0]
P3-13	Low 8-bit current position value	-32768-32767	0
P3-14	High 8-bit current position value	-32768-32767	0

· ···			
P3-15	Digital Input DI forced effective1	0000000-11111111	00000000
P3-16	Digital Input DI forced effective2	0000000-11111111	00000000
P3-17	Digital Input DI forced effective3	0000000-11111111	00000000
P3-18	Digital Input DI forced effective4	0000000-11111111	00000000
P3-19	Digital Input DI forced effective5	0000000-11111111	00000000
P3-20	Digital Output DO1 Function	0-99	18[2]
P3-21	Digital Output DO2 Function	0-99	3
P3-22	Digital Output DO3 Function	0-99	5
P3-23	Digital Output DO4 Function	0-99	8
P3-24	Digital Output DO5 Function	0-99	6[18]
P3-25	Digital Output DO6 Function	0-99	7
P3-30	Virtual Input Terminal Control	0-2	0
P3-31	The State Value Of Virtual Input Terminal	0000000-11111111	00000000
P3-32	Virtual Output Terminal Control	0-1	0
P3-33	The State Value Of Virtual Output Terminal	0000-1111	0000
P3-38	Virtual I/O Input DI1 Function	0-99	0
P3-39	Virtual I/O Input DI2 Function	0-99	0
P3-40	Virtual I/O Input DI3 Function	0-99	0
P3-41	Virtual I/O Input DI4 Function	0-99	0
P3-42	Virtual I/O Input DI5 Function	0-99	0
P3-43	Virtual I/O Input DI6 Function	0-99	0
P3-44	Virtual I/O Input DI7 Function	0-99	0
P3-45	Virtual I/O Input DI8 Function	0-99	0
n1.			

Remark:

1. P3-30=0, the number of IO input is 4 decided by DI1~DI4 and the corresponding parameter P3-0~P3-3;

2. P3-30=1, the number of IO input is 8 decided by P3-31 and the corresponding parameter P3-38~P3-45;

3. P3-30=2, the number of IO input is 12 decided by DI1~DI4 and P3-31 and the

corresponding parameter P3-0~P3-3 and P3-38~P3-45.

4. For parameter P3-24, when PA-104=1, this port can be set as differential output port.

7.2.2 DI Function Explanation

Input terminals(8 input terminals are corresponding to the definitions of P3-0, P3-1, P3-2,

P3-7[P3-3]).

Value	Symbol	Function	Explanation
0	NULL	No	Input state dose not effect system.
1	SON	Servo Enable	Input terminal of servo enable. OFF: servo driver can not be enabled and serv omotor is not excited. ON:servo driver is enabled and servomotor is excited.
2	ARST	Alarm Clear	Input terminal of alarm clearance.

			EMSD5 AC Servo Manual Chapter 7 Parameter				
Value	Symbol	Function	Explanation				
			When an alarm occurs and if the alarm is allowed clearance, the rising edge(from OFF becomes ON) of ARST will clear the alarm. Attention: only a part of alarms are allowed to clear.				
3	CCWL	CCW Drive Inhibition	 Input terminal of CCW drive inhibition: OFF:Inhibit CCW running. ON:Enable CCW running. Use this function for protection of the mechanical traveling limit. The function is controlled by the parameter PA-20. Pay attention to that the default value of PA-20 neglects this function. Therefore needs to modify PA-20 if need to use this function: (1):When PA-20=0,the function of input inhibition is effective. Whether to inhibit is decided by PA-83. (2):When PA-20=1, the function of input inhibition is not effective. Whether to inhibit is not decided by PA-83 Inhibition function is valid(PA-20=0): (1) PA-83=0, CCW torque limit is 0,but it does not limit CCW pulse input. (2) PA-83=1, it does not inhibit CCW pulse input. 				
4	CWL	CW Drive Inhibition	 The input terminal of CW drive inhibition OFF:Inhibit CCW running. ON:Enable CW running Use this function for protection of the mechanical traveling limit. The function is controlled by the parameter PA-20. Pay attention to that the default value of PA-20 neglects this function. Therefore needs to modify PA-20 if need to use this function: (1):When PA-20=0,the function of input inhibition is effective. Whether to inhibit for CW is decided by PA-83. (2):When PA-20=1, the function of input inhibition is not effective. Whether to inhibit for CW is not decided by PA-83 Inhibition function is valid(PA-20=0): (1):PA-83=0, CW torque limit is 0,but it does not limit CW pulse input. PA-83=1, it does not inhibit CW pulse input. 				
5	TCCW	CCW Torque Limitation	OFF:Torque is not limited by parameter PA-36 in CCW direction. ON :Torque is limited by parameter PA-36 in CCW direction. Attention: Whether the TCCW is effective or not, the				

Chapter 7 Parameters EMSD5 AC Servo Manual							
Value	Symbol	Function		Expl	anation		
			torque is also	limited by P.	A-34 in CCW direction.		
			OFF:Torque	is not limited	l by parameter PA-37 in CW		
			direction.				
6	TCW	CW Torque	ON :Torque	is limited b	by parameter PA-37 in CW		
0	10.00	Limitation	direction.				
					CW is effective or not, the		
					A-35 in CW direction.		
					he followings, the function of		
			-		en(speed is forced to zero):		
			-		A-4=1), and choose external		
7	ZCLAMP	Zero Speed	speed(PA-22				
		Clamping	2:ZCLAMP		1 1 1 004 77		
					than the value of PA-75		
			-		ve conditions is not satisfied,		
				m normal spe			
			<u>^</u>	orque control	mode, speed or torque		
8	CZERO	Zero Command	command:	aammand			
			OFF:Normal command ON::Zero command				
					mada anaad ar taraya		
		Instruction	In speed or torque control mode, speed or torque command:				
9	CINV	Reverse	OFF:Normal command				
			ON:Command reversed				
					-4=1), and choose internal		
10	SP1	Speed Choice 1	speed(PA-22=1). SP1 and SP2 combinations are used				
10	511	Speed Choice I	to select different internal speeds:				
		<u> </u>	SP2	SP1	Internal speed		
			OFF	OFF	Internal speed 1(PA-24)		
11	SP2	Speed Choice 2	OFF	ON	Internal speed 2(PA-25)		
11	512	Speed Choice 2	ON	OFF	Internal speed 3(PA-26)		
			ON	ON	Internal speed 4(PA-27)		
10		Torque Choice	In torque cor	ntrol mode(PA	-4=2), and choose internal		
13	TRQ1	1	<u>^</u>		nd TRQ2 combinations are		
				t different inte			
			TRQ2	TRQ1	Internal torque		
1.4		Torque Choice	OFF	OFF	Internal torque 1(PA-64)		
14	TRQ2	2	OFF	ON	Internal torque 2(PA-65)		
			ON	OFF	Internal torque 3(PA-66)		
			ON	ON	Internal torque 4(PA-67)		
		0	When PA-4 i	s set to 3, 4, 5	, it is in mix control mode. It		
16	CMODE	Composite			with this input terminal:		
10		Mode	PA-4		MODE state		

Value	Symbol	Function	EMSD5 AC Servo Manual Chapter 7 Parameter Explanation							
value	Symbol	Function	ON OFF				ΓD			
			3	Sno		ntrol n	ada		ntrol mode	
			4			ontrol r			ontrol mode	
			5			ontrol r			itrol mode	
								ar2 combinat		
10	CEAD1	Electronic Gear						tor of gear ra		
18	GEAR1	1		4R2	1	EAR1		Gear ra		
			0			OFF	Nu	merator 1(PA		
		Electronic Gear		FF		ON		merator 2(PA		
19	GEAR2	2		N		OFF		merator 3(PA		
		2	0			ON		merator 4(PA		
		Position	In pos	ition c	ontrol	mode		osition devia		
20	CLR	Deviation Clear	· ·				, P			
							positi	ion command	d pulse	
0.1		Pulse Input	inhibit				/ 1		1	
21	INH	Inhibition	OFF: 7	OFF: The input command pulse is valid.						
			ON : 1	The inj	out co	mman	d pulse	e input is pro	hibited.	
			In spe	ed con	trol m	node, P	A-22=	5, connect to	the signal,	
22	JOGP	CCW Inching	the motor is in inching in CCW and speed is set by PA-21.							
22		JOGP CCW		Attent	ion: If	the si	gnal is	conne	ected to CW	inching,
			inching function does not work.							
			~					5, connect to	-	
23	JOGN CW Inchin	CW Inching	the motor is in inching in CW and speed is set by PA-21.							
	0001	e ii mening	Attention: If the signal is connected to CCW inching, inching function does not work.							
		Internal	In internal position register mode, the motor will stop							
27		Position	rotating if the signal is active(It can or internal position mode PA-14=3).				-	ork when		
27	HOLD	Control	interna	al posi	tion n	node P	A-14=.	3).		
		Command								
		Stops	La int		:4: .		-			
		Internal				•		ode, the signosition reg	-	
		Position						and then th		
28	CTRG	Command				·				
		Triggers	rotate according to the internal position register common Only when ZSPD=1(digital output) it would receive a transmission of the second secon							
		Inggens	-			nmand	-		cective a nex	
		Internal						of the inter	rnal position	
•	B <i>C</i> C C	Position	selecti	-		- 51 40			- r oontoo	
29	POS0	Command	POS2		POS0	CTRG	Positi	ion command	Speed	
		Selection0	0	0	0	1		24-2, P4-3	P4-4	
20	DOGI	Internal	0	0	1	1		4-5, P4-6	P4-7	
30	POS1	Position			-			,	,	

napter / rarameters			EMSDS AC Servo Manual						
Value	Symbol	Function	Explanation						
		Command	0	1	0	↑	P4-8, P4-9	P4-10	
		Selection1	0	1	1	Î	P4-11, P4-12	P4-13	
		Internal	1	0	0	Ŷ	P4-14, P4-15	P4-16	
21	31 POS2	Position	1	0	1	↑	P4-17, P4-18	P4-19	
31		Command	1	1	0	1	P4-20, P4-21	P4-22	
		Selection2	1	1	1	Ŷ	P4-23, P4-24	P4-25	
33	SHOM	Starting Origin Regression	origin The signal furns on and starts searching for the						
34	ORGP	Origin Of Regression	In internal position register mode, it needs to search for origin. The signal turns on and starts searching for the origin function(Refer to the setting of P4-32).						

7.2.3 DO Function Explanation

Output terminals(6 input terminals are corresponding to the definitions of P3-20, P3-21, P3-22, P3-25[P3-23]).

Value	Symbol	Function	Explanation
1	ON	Always Valid	Forced output ON.
2	RDY	Servo Ready	OFF :Main power supply is off, or alarm occurs; ON:Main power supply is normal, no alarm occurs
3	ALM	Alarm	OFF :alarm occurs. ON :no alarm occurs.
4	ZSP	Zero Speed	In speed or torque control mode: OFF:motor speed is higher than the value of PA-75 (no direction). ON:motor speed is higher than the value of PA-75 (no direction).
5	COIN	Positioning Completion	In position control mode: OFF:position deviation is bigger than parameter PA-16. ON: position deviation is bigger than parameterpa16.
6	ASP	Arrival Speed	In speed or torque control mode: OFF :motor speed is lower than parameter PA-28. ON : motor speed is higher than parameter PA-28. Polarity function can be set referring to the explanation of PA-28.
7	ATRQ	Arrival Torque	OFF : motor torque is lower than parameter PA-89; ON : motor torque is higher than parameter PA-89. Polarity function can be set referring to the explanation of PA-89.
8	BRK	Electromagnet ic Brake	OFF : electromagnetic brake applies the brake. ON : electromagnetic brake releases the brake.
9	RUN	Servo	OFF : servo motor does not excite.

76

		Running	ON : servo motor has excited.
10	NEAR	Near Position	In position control mode: OFF: position deviation is bigger than parameter PA-85. ON: position deviation is smaller than parameter PA-85.
11	TRQL	Torque Limitation	OFF : motor torque has not reached the limitation. ON : motor torque has reached the limitation. Torque limitation is set bypa34,PA-35,PA-36 and PA-37.
12	SPL	Speed Limitation	In torque control mode: OFF : motor speed has not reached the limitation. ON : motor speed has reached the limitation. Speed limitation is set bypa50.
13	VCOIN	Speed Consistency	OFF: The absolute value of the difference between the actual rotational speed and the instruction speed is bigger than PA-76. ON: The absolute value of the difference between the actual rotational speed and the instruction speed is smaller than PA-76.
15	HOME	Origin Regression Completion	OFF: No signal output when the origin regression doesn't complete. ON: The signal outputs when the origin regression completes.
16	CMDOK	Internal Position Command Completion	OFF: No signal output when internal position command doesn't complete or internal position command doesn't stop. ON: The signal outputs after the setting time of P4-1 when internal position command completes or internal position command stops.
18	ZOUT	Z Signal Output	OFF: Do not output signal when Z signal is invalid. ON : Signal outputs when Z signal is valid.

7.2.4 DI Forced Valid

_

There are 5 parameters(P3-15, P3-16, P3-17, P3-18, P3-19) in group P3 and they can force DI valid.

(1) Corresponding functions for P3-15 is represented by 8-bit binary:

Number	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Function	CZERO	ZCLAMP	TCW	TCCW	CWL	CCWL	ARST	SON

(2) Corresponding functions for P3-16 is represented by 8-bit binary:

Number	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Function	CMODE	NULL	TRQ2	TRQ1	NULL	SP2	SP1	CINV

(3) Corresponding functions for P3-17 is represented by 8-bit binary:

Number	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Function	NULL	JOGN	JOGP	INH	CLR	GEAR2	GEAR1	NULL

(4) Corresponding functions for P3-18 is represented by 8-bit binary:

Number	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Function	NULL	POS2	POS1	POS0	CTRG	HOLD	NULL	NULL

(5) Corresponding functions for P3-19 is represented by 8-bit binary:

Number	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Function	NULL	NULL	NULL	NULL	NULL	NULL	ORGP	SHOM

Parameter Meaning:

One of 5 parameters	Corresponding Function	Result
0	Unplanned	OFF (invalid)
U	Already Planned	It is up to signals
1	Unplanned Or Already Planned	ON (forced valid)

NOTE

Being planned means that the parameter has been selected by the input terminal in the P3-0~P3-3.

7.3 P4 Group Parameters For Internal Position Command

No.	Name	Function	Rang	Default
P4-0	Internal position instruction control mode	0: absolute position instruction. 1: incremental position instruction.	0-1	0
P4-1	The digital output delay of internal position completion	 When the internal position command is completed or stops, the output internal position command completes (CMDOK) this DO signal after the delay time set by P4-1. Only when the delay time P4-1=0 and CMDOK=1 can it receive trigger internal position command. Only when the delay time P4=1 is not 0 and CMDOK=1 can it receive the internal position command triggered by CTRG. 	0-200ms	0
P4-2	The setting of position Cycle numbers for	To set position cycles of the first internal position.	-30000- 30000	0

	0
/rev	
	1000
r/mın	
	0
30000	
	0
/rev	
0.5000	
	1000
r/min	
20000	
	0
50000	
	0
/rev	
	max.cnt /rev 0-5000 r/min 30000- 30000 max.cnt /rev 0-5000 r/min 30000- 30000- 30000 max.cnt /rev

Chapter 7	Parameters	EMSD5 AC Servo Manual		
P4-10	The move speed of internal position instruction 3	To set the move speed of internal position instruction 3.	0-5000 r/min	1000
P4-11	The number of position cycles of internal position instruction 4	To set the number of position cycles of the fourth stage internal position.	-30000- 30000	0
P4-12	The pulse	 To set the position pulses of the 4th stage internal position. Internal position instruction 4=the position cycles setting of the 4th internal position+the pulse number setting of the 4th internal position. 	+/-max.cnt	0
P4-13	The move speed of internal position instruction 4	To set the move speed of internal position instruction 4.	0-5000 r/min	1000
P4-14	The position cycles of internal position instruction 5	To set the position cycles of the 5 th stage internal position instruction.	-30000- 30000	0
P4-15	The pulse number setting in position loop of internal position instruction 5	 To set the position pulses of the 5th stage internal position. Internal position instruction 3=the position cycles setting of the 5th internal position+the pulse number setting of the third internal position. 	+/-max.cnt	0
P4-16	The move speed of internal position instruction 5	To set the move speed of internal position instruction 5.	0-5000 r/min	1000
P4-17	The number of position cycles of internal position instruction 6	To set the number of position cycles of the sixth stage internal position.	-30000- 30000	0
P4-18	The pulse	1. To set the position pulses of the 6th stage	+/-max.cnt	0

		EMSDS AC SERVO Manual	Chapter	· / Parameters
	number setting	internal position.	/rev	
	in position	2. Internal position instruction 6=the position		
	loop of	cycles setting of the 6 th internal position+the pulse		
	internal	number setting of the 6 th internal position.		
	position			
	instruction 6			
	The position			
	cycles of			
P4-19	internal	To set the position cycles of the 7 th stage internal	0-5000	1000
1 1 12	position	position instruction.	r/min	1000
	instruction 7			
	The position			
D4 00	cycles of	To set the position cycles of the 7 th stage internal	-30000-	0
P4-20	internal	position instruction.	30000	0
	position	*		
	instruction 7			
	The pulse			
	÷	1. To set the position pulses of the 7 th stage		
	in position	internal position.	+/-max.cnt	
P4-21	loop of	2. Internal position instruction 7=the position	/rev	0
	internal	cycles setting of the 7th internal position+the pulse	/100	
	position	number setting of the 7 th internal position.		
	instruction 7			
	The move			
	speed of		0.5000	
P4-22	internal	To set the move speed of internal position instruction	0-5000	1000
	position	7.	r/min	
	instruction 7			
	The number of			
	position cycles			
P4-23	of internal	To set the number of position cycles of the eighth		0
	position	stage internal position.	30000	2
	instruction 8			
	The pulse			
	number setting	1. To set the position pulses of the 8th stage		
	in position loop	internal position.	+/-max.cnt	
P4-24		2. Internal position instruction 8=the position		0
	of internal	cycles setting of the 8th internal position+the pulse	/rev	
	position	number setting of the 8 th internal position.		
	instruction 8			
	The move		0.5000	
P4-25	speed of	To set the move speed of internal position instruction		1000
	internal position	δ.	r/min	
	instruction 8			<u>,</u>
P4-32	The type of	0: Forward direction origin regression and CCWL	0-5	0

origin detector and setting of finding is as regression origin. as regression origin. 2: Forward direction origin regression and ORGP is as regression origin. 3: Reverse direction origin regression and ORGP is as regression origin. 3: Reverse direction origin regression and ORGP is as regression origin. 3: Reverse looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin. 6: Find the reference origin and return to search for the Z phase pulse as the mechanical origin. 2: Find the reference origin detector ORGP as the mechanical origin. 2: Find the reference origin detector and the setting value of the search direction can be used as 2, 3, 4 or 5.) 0-2 0 P4-33 Origin trigger the setting value of the search direction can be mechanical origin. 2: Find the references origin negression function. 2: Find the reference origin detector and the setting value of the search direction can be used as 2, 3, 4 or 5.) 0-2 0 P4-34 Origin trigger the mechanical origin regression function. 2: Trigger the origin regression function by the input contact of the origin search function. 2: Trigger the origin regression function by the input contact of the origin search function. 1: Automatically perform origin regression when the special detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The special setting of origin regress in the first stage of high speed (HSPD1) 1-2000 r/min 1000 r/min P4-35 The speed setting of origin regress in the first stage of high speed the proved origin regression in the second stage of high speed. 1-500 r/min 50 P4-38	Chapter /	Parameters	EMSD5 AC Servo Manual		
finding direction as regression origin. 2: Forward direction origin regression and ORGP is as regression origin. 3: Reverse direction origin regression and ORGP is as regression. 3: Reverse direction origin regression and ORGP is as regression. 5: Reverse looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. 0: Find the reference origin and return to search for the Z phase pulse as the mechanical origin. P4-33 0: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. 02 P4-34 0: Grigin trigger start mode 0: Close origin regression function. 02 P4-35 The speed origin stop origin stage of high speed (HSPD1) 0: The motor slows down and pulls back to the origin detection completed. 01 P4-36 The speed setting of origin first stage of high speed(HSPD2) To set the speed of origin regression in the second r/min 1-2000 r/min 1000 P4-38 The speed stage of high speed. To set the speed of origin regression in the second r/min 1-500 r/min 50		origin detector	is as regression origin.		
direction 2: Forward direction origin regression and ORGP is as regression origin. 3: Reverse direction origin regression and ORGP is as regression origin. 3: Reverse direction origin regression and ORGP is as regression origin. 4: Forward looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. 74-33 Set the mode of short distance movement to the origin of regression. 1: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. 74-33 Set the mode of short distance movement to the origin of regression function. 1: Find the reference origin detector ORGP as the mechanical origin. 0-2 0 74-34 Origin trigger start mode 0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 0-2 0 74-34 The setting of origin regression function. 0: The motor slows down and pulls back to the origin detection completed. 0-1 0 74-35 The speed setting of origin regress in the first stage of high speed. To set the speed of origin regression in the second regression in the second regression in the second stage of high speed. 1-2000 r/min 1000 74-38 The speed setting of origin speed of origin regression in the second high speed. 1-500 r/min 50 74-38 The speed setting of origin speed of origin re		and setting of	1: Reverse direction origin regression and CWL is		
P4-33is as regression origin. 3: Reverse direction origin regression and ORGP is as regression origin. 4: Forward looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. 2: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. 2: Find the rising edge of the detector ORGP as the secting value of the search direction can be used as 2, 3,4 or 5.)0-20P4-34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin regression function. 1: Automatically perform origin search function. 2: Trigger the origin detection completed. 1: The motor slows down and pulls back to the origin when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed.0-10P4-35The speed setting of origin regress in the first stage of high speed (HSPD1)To set the speed of origin regression in the second r/min1-2000 r/min1000P4-36The speed sting of origin regress in the first stage of high speed (HSPD1)To set the cycle number of origin regression in the second r/min1-500 r/minP4-37The		finding	as regression origin.		
P4-33 3: Reverse direction origin regression and ORGP is as regression origin. 4: Forward looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. P4-33 Set the mode of short distance movement to the origin 0: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. 02 P4-34 Origin trigger start mode 0: Close origin regression function. 02 0 P4-35 The setting of origin regress in the norigin detection completed. 0: The motor slows down and pulls back to the origin detection completed. 0-2 0 P4-36 The speed setting of origin regress in the first stage of high speed (HSPD2) 0: The setting of origin regress in the speed of origin regression in the second high speed. 0-1 0 P4-37 The speed setting of origin regression function. 1: Set the speed of origin regression in the second high speed. 1-2000 r/min 1000 P4-38 The speed setting of origin regress in the first stage of high speed. To set the speed of origin regression in the second high speed. 1-500 r/min 50 P4-38 The speed number of origin regression in the second high speed. To set the cycle number of origin regression in the second high speed. 50 P4-38 The speed number of To set the cycle number of or		direction	2: Forward direction origin regression and ORGP		
P4-33 is as regression origin. 4: Forward looking for Z pulse as the origin of regression. 5: Reverse looking for Z pulse as the origin of regression. P4-33 Set the mode of short distance movement to the origin 0: Find the reference origin and return to search for the Z phase pulse as the mechanical origin. 0.2 0 P4-34 Origin trigger start mode of rigin regression function. 1: Find the reference origin regression function. 0.2 0 P4-34 Origin trigger start mode 0: Close origin regression function. 0.2 0 P4-34 Origin trigger fast mode 0: The motor slows down and pulls back to the origin detection completed. 0.2 0 P4-35 The setting of origin regress in the first stage of high speed (HSPDI) 0: To set the speed of origin regression in the second stage of high speed. 0.1 0 P4-37 The cycle number of high speed. To set the cycle number of origin regression in the second regression or fight speed. 1.500 50 P4-38 mome of the cycle number of origin regression in the second high speed. 1.500 50			is as regression origin.		
P4-33 4: Forward looking for Z pulse as the origin of regression. Set the mode of short distance movement to the origin 0: Find the reference origin and return to search for the Z phase pulse as the mechanical origin. P4-33 Set the mode of short distance movement to the origin 0: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. P4-34 Origin trigger start mode 1: Find the reference origin regression function. 0: Or Close origin regression function. P4-34 Origin trigger start mode 0: Close origin regression function. 0: Trigger the origin genession function by the input contact of the origin search function. 02 0 P4-34 The setting of origin trigger start mode 0: To set the origin detection completed. 0-1 0 P4-34 The setting of origin regress in the first stage of high speed (HSPD1) To set the speed of origin regression in the second high speed. 1-2000 1000 P4-35 The speed Number of high speed. To set the speed of origin regression in the second high speed. 1-500 50 P4-36 The speed Number of origin regression in the second high speed. 1-500 50 P4-36 The speed Number of origin regression in the second high speed. 1-500 50 P4-37 The speed Number of Numb			3: Reverse direction origin regression and ORGP		
P4-33regression. 5: Reverse looking for Z pulse as the origin of regression. 0: Find the reference origin and return to search for the Z phase pulse as the mechanical origin. 1: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. 2: Find the rising edge of the detector ORGP as the eorigin 0: When it is 2, only the type of origin detector and the setting value of the search direction can be used as 2, 3, 4 or 5.)0-20P4-34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression function. 2: Trigger the origin regression function. 2: Trigger the origin detector completed. 1: The motor slows down and pulls back to the origin stop mode0-20P4-35The speed (HSPDI)0: The motor slows forward and stops when the origin detection completed. 1: The source of high speed (HSPDI)0: To set the speed of origin regression in the second try HSP20-10P4-36The speed setting of origin regress in the first stage of high speed (HSPDI)To set the speed of origin regression in the second tage of high speed.1-500 r/min50P4-38The cycle number of offisetTo set the cycle number of origin regression offiset-30000- 00000			is as regression origin.		
P4-33Set the mode of short distance movement to the origin0: Find the reference origin and return to search for the Z phase pulse as the mechanical origin. 1: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. 2: Find the rising edge of the detector ORGP as the mechanical origin. (when it is 2, only the type of origin detector and the setting value of the search direction can be used as 2, 3,4 or 5.)020P4-34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin detection completed. 1: The motor slows down and pulls back to the origin detection completed. 1: The motor slows down and pulls back to the origin detection completed. 1: The motor slows forward and stops when the iorigin detection completed. 1: The setting of high speed first stage of high speed of high speed(HSPD1)0: Set the speed of origin regression in the second stage of high speed.0-10P4-38The speed setting of origin regress in the first stage of high speed(HSPD2)To set the speed of origin regression in the second stage of high speed.1-500 r/min50P4-38The cycle number of offisetTo set the cycle number of origin regression stage of high speed30000- 300000			4: Forward looking for Z pulse as the origin of		
P4-33regression.P4-330: Find the reference origin and return to search for the Z phase pulse as the mechanical origin. 1: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. 2: Find the reference origin detector ORGP as the mode of the origin020P4-330: Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin regression function. 0: Close origin regression function. 1: Automatically perform origin tregression when it is powering on. 2: Trigger the origin regression function. 0: The motor slows down and pulls back to the origin when the origin detection completed.0-20P4-34The speed setting of origin regress in the first stage of high speed (HSPD1)0: The motor slows down and pulls back to the origin detection completed.0-10P4-35The speed setting of origin regress in the first stage of high speed high speed efficience origin regression in the second high speed.12000 r/min1.000P4-36The speed setting of origin regress in the first stage of high speed.To set the speed of origin regression in the second stage of high speed.50P4-36The speed setting of origin regress in the first stage of high speed(HSPD2)To set the cycle number of origin regression stage of high speed.1-500 r/minP4-38The cycle number of origin tregressionTo set the cycle number of origin regression origin regression-50000- -30000-			regression.		
P4-33Set the mode of short distance movement to the origin0. Find the reference origin and return to search for the Z phase pulse as the mechanical origin. 1: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. 2: Find the rising edge of the detector ORGP as the mechanical origin. 2: Find the rising edge of the detector and the mechanical origin. (when it is 2, only the type of origin detector and the setting value of the search direction can be used as 2, 3,4 or 5.)0-20P4-34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin regression function. 1: Automatically perform origin search function. 1: The motor slows down and pulls back to the origin when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The setting of ingin stop mode0-10P4-36The speed setting of origin regress in the first stage of high speed (HSPD1)To set the speed of origin regression in the second stage of high speed.1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed (HSPD1)To set the speed of origin regression in the second stage of high speed.50P4-38The cycle number of of pictTo set the cycle number of origin regression offset50			5: Reverse looking for Z pulse as the origin of		
P4-33Set the mode of short distance movement to the originfor the Z phase pulse as the mechanical origin. 1: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. 2: Find the rising edge of the detector ORGP as the mechanical origin. (when it is 2, only the type of origin detector and the setting value of the search direction can be used as 2, 3,4 or 5.)0-20P4-34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin regression function. 1: Automatically perform origin search function. 1: Automatically perform origin search function. 0: Close origin regression function by the input contact of the origin search function. 1: The motor slows down and pulls back to the origin detection completed. 1: The motor slows forward and stops when the origin detection completed.0-10P4-36The speed setting of origin regress in the first stage of high speed (HSPD1)To set the speed of origin regression in the second stage of high speed.1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed (HSPD1)To set the speed of origin regression in the second r/min50P4-38The cycle nTo set the cycle number of origin regression-30000- 00			regression.		
P4-33Set the mode of short distance movement to the origin1: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. 2: Find the rising edge of the detector ORGP as the mechanical origin. (when it is 2, only the type of origin detector and the setting value of the search direction can be used as 2, 3,4 or 5.)0-20P4-34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin search function. 0: The motor slows down and pulls back to the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed.0-10P4-36The speed setting of origin regress in the first stage of high speed (HSPD1)To set the speed of origin regression in the second stage of high speed.1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed (HSPD2)To set the speed of origin regression in the second stage of high speed.50P4-38The cycle number of of speed (HSPD2)To set the cycle number of origin regression first stage of of speed (HSPD2)50			0: Find the reference origin and return to search		
P4-33Set the mode of short distance movement to the origin1: Find the reference origin and keep forward for the Z phase pulse as the mechanical origin. 2: Find the rising edge of the detector ORGP as the mechanical origin. (when it is 2, only the type of origin detector and the setting value of the search direction can be used as 2, 3,4 or 5.)0-20P4-34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin search function. 0: The motor slows down and pulls back to the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed.0-10P4-36The speed setting of origin regress in the first stage of high speed (HSPD1)To set the speed of origin regression in the second stage of high speed.1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed (HSPD2)To set the speed of origin regression in the second stage of high speed.50P4-38The cycle number of of speed (HSPD2)To set the cycle number of origin regression first stage of of speed (HSPD2)50			-		
P4-33Set the mode of short distance movement to the originthe Z phase pulse as the mechanical origin. 2: Find the rising edge of the detector ORGP as the mechanical origin. (when it is 2, only the type of origin detector and the setting value of the search direction can be used as 2, 3,4 or 5.)0-20P4-34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin search function. 0: The motor slows down and pulls back to the origin stop mode0-20P4-36The setting of origin fragers in first stage of high speed (HSPD1)0: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed.0-10P4-36The speed setting of origin regress in the first stage of high speed of (HSPD1)To set the speed of origin regression in the second stage of high speed.1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed of origin speed as the speed of origin regression in the second speed(HISPD2)50P4-38The cycle number of offsetTo set the cycle number of origin regression for set the cycle number of origin regression-30000- 300000			· · ·		
P4-33 short distance movement to the origin 2: Find the rising edge of the detector ORGP as the mechanical origin. (when it is 2, only the type of origin detector and the setting value of the search direction can be used as 2, 3, 4 or 5.) 0-2 0 P4-34 Origin trigger start mode 0: Close origin regression function. 1: Automatically perform origin regression function by the input contact of the origin search function. 2: Trigger the origin detection completed. 1: The motor slows down and pulls back to the origin when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 0-1 0 P4-36 The speed setting of origin regress in the first stage of high speed (HSPD1) To set the speed of origin regression in the second stage of high speed. 1-2000 r/min 1000 P4-37 The speed setting of origin regress in the first stage of high speed of high speed. To set the speed of origin regression in the second stage of high speed. 1-500 r/min 50 P4-38 The cycle number of To set the cycle number of origin regression offset To set the cycle number of origin regression high speed. 30000- 300000 0					
movement to the originthe mechanical origin. (when it is 2, only the type of origin detector and the setting value of the search direction can be used as 2, 3, 4 or 5.)P4-34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin search function. 0: Close origin detection completed.0-20P4-35The setting of origin stop mode0: The motor slows down and pulls back to the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The speed setting of origin regress in the first stage of high speed (HSPD1)0: To set homing speed at 1st stage.0-10P4-36The speed setting of origin regress in the first stage of high speed (HSPD1)To set the speed of origin regression in the second stage of high speed.1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed(HSPD2)To set the cycle number of origin regression in the second stage of high speed.50P4-38The cycle number ofTo set the cycle number of origin regression offset-30000- 300000	P4-33		· · ·	0-2	0
the origin(when it is 2, only the type of origin detector and the setting value of the search direction can be used as 2, 3,4 or 5.)P4.34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin search function. 0: The setting of origin stop mode0: Close origin regression function by the input contact of the origin search function. 0: The motor slows down and pulls back to the origin detection completed. 1: The motor slows forward and stops when the origin detection completed.0-10P4.36The speed setting of origin regress in the first stage of high speed (HSPD1)To set the speed of origin regression in the second stage of high speed.1-2000 r/min1000P4.37The speed setting of origin regress in the first stage of high speed(HSPD2)To set the speed of origin regression in the second stage of high speed.1-500 r/min50P4.38The cycle number of of kighTo set the cycle number of origin regression offset-30000- 300000					
P4-34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin search function.0-20P4-35The setting of origin stop mode0: The motor slows down and pulls back to the origin when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed.0-10P4-36The speed setting of origin regress in the first stage of high speed (HSPD1)To set homing speed at 1st stage.1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed(HSPD2)To set the speed of origin regression in the second stage of high speed.1-500 r/min50P4-38The cycle number ofTo set the cycle number of origin regression offset-30000- 300000		the origin	-		
P4-34Origin trigger start mode0: Close origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin regression function. 1: Automatically perform origin regression when it is powering on. 2: Trigger the origin search function.0-20P4-35The setting of origin stop mode0: The motor slows down and pulls back to the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The speed setting of origin regress in the first stage of high speed (HSPD1)0: To set homing speed at 1st stage.1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed(HSPD2)To set the speed of origin regression in the second stage of high speed.1-500 r/min50P4-38The cycle number of offsetTo set the cycle number of origin regression offset					
P4-34Origin trigger start mode1: Automatically perform origin regression when it is powering on. 2: Trigger the origin regression function by the input contact of the origin search function.0-20P4-35The setting of origin stop mode0: The motor slows down and pulls back to the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The speed setting of origin regress in the first stage of high speed (HSPD1)0: To set homing speed at 1st stage.0-10P4-37The speed setting of origin regress in the first stage of high speed(HSPD2)To set the speed of origin regression in the second stage of high speed.1-2000 r/min1000P4-38The speed setting of origin regress in the first stage of high speed(HSPD2)To set the speed of origin regression in the second stage of high speed.1-500 r/min50P4-38The cycle number ofTo set the cycle number of origin regression offset-30000- 300000			used as 2, 3,4 or 5.)		
P4-34 Origin trigger start mode it is powering on. 2: Trigger the origin regression function by the input contact of the origin search function. 0-2 0 P4-35 The setting of origin stop mode 0: The motor slows down and pulls back to the origin detection completed. 0-1 0 P4-36 The speed setting of origin regress in the first stage of high speed (HSPD1) To set homing speed at 1st stage. 1-2000 r/min 1-2000 r/min 1000 P4-36 The speed setting of origin regress in the first stage of high speed(HSPD2) To set the speed of origin regression in the second stage of high speed. 1-500 r/min 50 P4-38 The cycle number of To set the cycle number of origin regression -30000- offset 0 0			0: Close origin regression function.		
P4-34 start mode it is powering on. 0-2 0 2: Trigger the origin regression function by the input contact of the origin search function. 0. 1. 1. P4-35 The setting of origin stop mode 0: The motor slows down and pulls back to the origin detection completed. 0-1 0 P4-36 The speed setting of origin regress in the first stage of high speed (HSPD1) To set the speed of origin regression in the second stage of high speed. 1-2000 r/min 1000 P4-37 The speed setting of origin regress in the first stage of high speed. To set the speed of origin regression in the second stage of high speed. 1-500 r/min 50 P4-38 The cycle number of origin regression of the cycle number of origin regression of origin regression of the cycle number of origin regressin number of origin re		0.1.1.1	1: Automatically perform origin regression when		
P4-35The setting of origin stop mode0: The motor slows down and pulls back to the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 1: The speed first stage of high speed (HSPD1)0: The motor slows forward and stops when the origin detection completed. 1-2000 r/min0-10P4-36The speed setting of origin regress in the first stage of high speed setting of origin regress in the first stage of high speed(HSPD2)To set the speed of origin regression in the second stage of high speed.1-500 r/min1000P4-38The cycle number ofTo set the cycle number of origin regression offset50	P4-34		it is powering on.	0-2	0
P4-35The setting of origin stop mode0: The motor slows down and pulls back to the origin when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed.0-10P4-36The speed setting of origin regress in the first stage of high speed (HSPD1)To set homing speed at 1st stage. HSP21-2000 r/min1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed(HSPD2)To set the speed of origin regression in the second stage of high speed.1-500 r/min50P4-38The cycle number ofTo set the cycle number of origin regression offset30000- 300000		start mode	2: Trigger the origin regression function by the		
P4-35Ine setting of origin stop modeorigin when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed.0-10P4-36The speed setting of origin regress in the first stage of (HSPD1)To set homing speed at 1st stage.1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed (HSPD1)To set the speed of origin regression in the second stage of high speed.1-500 r/min1000P4-37The speed setting of origin regress in the first stage of high speed(HSPD2)To set the cycle number of origin regression offset1-500 r/min50			input contact of the origin search function.		
P4-35 origin stop mode origin when the origin detection completed. 1: The motor slows forward and stops when the origin detection completed. 0-1 0 P4-36 The speed setting of origin regress in the first stage of high speed (HSPD1) To set homing speed at 1st stage. 1-2000 r/min 1000 P4-36 The speed setting of origin regress in the first stage of high speed setting of origin regress in the first stage of high speed(HSPD2) To set the speed of origin regression in the second stage of high speed. 1-500 r/min 50 P4-37 The cycle number of To set the cycle number of origin regression offset To set the cycle number of origin regression offset 0		The active of	0: The motor slows down and pulls back to the		
P4-36 The speed setting of origin regress in the first stage of high speed (HSPD1) To set homing speed at 1st stage. 1-2000 r/min 1000 P4-36 The speed setting of origin regress in the first stage of high speed setting of origin regress in the first stage of high speed(HSPD2) To set the speed of origin regression in the second stage of high speed. 1-500 r/min 1000 P4-37 The speed setting of origin regress in the first stage of high speed(HSPD2) To set the speed of origin regression in the second stage of high speed. 1-500 r/min 50 P4-38 The cycle number of offset To set the cycle number of origin regression offset -30000- 30000 0	D4 25	-	origin when the origin detection completed.	0.1	0
P4-36The speed setting of origin regress in the first stage of (HSPD1)To set homing speed at 1st stage.1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed setting of origin regress in the first stage of high speed setting of origin regress in the first stage of high speed.To set the speed of origin regression in the second stage of high speed.1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed(HSPD2)To set the speed of origin regression in the second stage of high speed.1-500 r/min50P4-38The cycle number of offsetTo set the cycle number of origin regression offset-30000- 300000	P4-35		1: The motor slows forward and stops when the	0-1	0
P4-36setting of origin regress in the first stage of high speed (HSPD1)HSP1 z pulse1-2000 r/min1000P4-37The speed setting of origin regress in the first stage of high speed(HSPD2)To set the speed of origin regression in the second stage of high speed.1-2000 r/min1000P4-38The cycle number ofTo set the cycle number of origin regression1-500 r/min50		mode	origin detection completed.		
P4-36 regress in the first stage of high speed (HSPD1) 1-2000 1000 P4-37 The speed setting of origin regress in the first stage of high speed. To set the speed of origin regression in the second stage of high speed. 1-500 1000 P4-37 The speed setting of origin regress in the first stage of high speed. To set the speed of origin regression in the second stage of high speed. 1-500 50 P4-38 The cycle number of origin regression of origin of origin regression of origin regression of origin regression of origin of origin of origin regression of origin regression of origin regression of origin of ori		The speed	To set homing speed at 1st stage.		
P4-36 first stage of high speed (HSPD1) r/min 1000 P4-37 The speed setting of origin regress in the first stage of high speed(HSPD2) To set the speed of origin regression in the second stage of high speed. 1-500 r/min 50 P4-38 The cycle number of offset To set the cycle number of origin regression offset -30000- 30000 0		setting of origin	HSP1		
first stage of high speed (HSPD1) Z pulse I r/min P4-37 The speed setting of origin regress in the first stage of high speed(HSPD2) To set the speed of origin regression in the second stage of high speed. 1-500 r/min 50 P4-38 The cycle number of offset To set the cycle number of origin regression offset -30000- 30000 0	D4 26	regress in the		1-2000	1000
(HSPD1) Image: height of the speed setting of origin regress in the first stage of high speed. To set the speed of origin regression in the second stage of high speed. 1-500 r/min 50 P4-37 The cycle number of origin regression of the cycle number of origin regressi number of origin regression of the cycle	P4-30	first stage of		r/min	1000
(HSPD1) h		high speed	Z pulse HSP2		
P4-37 setting of origin regress in the first stage of high speed. To set the speed of origin regression in the second stage of high speed. 1-500 r/min 50 P4-38 The cycle number of origin regression of origin regression of the cycle number of origin regression of the		(HSPD1)	<u> </u>		
P4-37 regress in the first stage of high speed. 10 set the speed of origin regression in the second stage of high speed. 1-500 r/min 50 stage of high speed. r/min 50 P4-38 The cycle number of origin regression of origin regression -30000-offset 0		The speed			
P4-37 regress in the first stage of high speed. 1-500 50 first stage of high speed. r/min 50 high speed(HSPD2) The cycle number of origin regression -30000- 0 P4-38 number of offset 30000 0		setting of origin	To set the speed of origin regression in the second		
first stage of high speed(HSPD2) r/min The cycle number of offset To set the cycle number of origin regression offset -30000- 30000 0	PA 27			1-500	50
speed(HSPD2) The cycle P4-38 To set the cycle number of origin regression -30000- 0	г4-37	first stage of	stage of fingh speed.	r/min	50
P4-38 The cycle number of origin regression -30000- offset 0 0		high			
P4-38 number of lo set the cycle number of origin regression -30000- offset 30000 0		speed(HSPD2)			
P4-38 number of offset 30000 0		The cycle	To set the cycle number of origin regression	-30000	
origin 50000	P4-38	number of			0
		origin		50000	

	regression offset(HOF1)			
P4-39	The pulse number of origin regression offset(HOF2)	1: To set the pulse number of origin regression offset. 2: When the parameter function HOF1 and HOF2 are set to 0, the origin is defined as Z pulse or ORGP by the origin regression mode. If they are not 0, the origin will define the above Z pulse plus last pulse offset HOF1 ×10000+HOF2 as the new origin.	+/-max.cnt /rev	0

Chapter 8 Fault and Troubleshooting

No.	Fault Name	Introduction
	Normal	
1	Over speed	Motor speed over than the setting values.
2	Main circuit over voltage	The voltage of main circuit is too high
3	Main circuit under voltage	The voltage of main circuit is too low
4	Position overshoot	The value of position deviation counter is over than the setting value.
5	Drive overheat	The temperature of the drive is high
6	Speed amplifier saturation fault	Speed adjustment for long time saturation
7	Drive inhibit error	Speed adjustment in saturation for long time
8	Position deviation accumulation was out of range	Absolute value of position deviation accumulation is over than 2 ³⁰ .
11	IPM module error	IPM smart module error
13	Drive overload	Servo drive and motor overload(overheat instantaneously)
14	Brake fault	Brake circuit Error
18	Relay switch fault	The real state of relay is different from control state
19	Delay to open the brake	Pulse inputs before opening
20	EEPROM error	EEPROM error
21	FPGA module fault	FPGA module fault
23	Current collecting circuit fault	Current collecting circuit fault
29	Alarm for torque overload	Motor load exceeds user-set values and range
38	Failure to read or write encoder	The encoder cable was not connected Or the encoder
30	EEPROM communication	interface circuit fault.
39	Data CRC checking error	The motor encoder hasn't written dataes and all are 0.
40	Model not supported	Driver does not support this motor model
41	Need to switch motor model	The current motor is inconsistent with the selected model of the drive.
42	AC input under voltage	AC input under voltage

47	Over voltage when main circuit in powering up	Over voltage when main circuit in powering up
50	Encoder communication fault	Driver and encoder are not connected
51	Encoder communication abnormal	After the encoder established the communication, there appears the interrupt and disconnection.
52	Encoder battery voltage insufficient alarm	Encoder battery voltage insufficient alarm, but information did not lost and needs to be replaced as soon as possible.
53	Encoder battery voltage error alarm	Encoder battery voltage error alarm, and storage information has occurred error needing to reset encoder.
54	Encoder error alarm	Encoder non-battery alarm, but need to reset encoder again.
55	CRC check occurs errors for 3 times in a row	Encoder communication received data CRC validation 3 consecutive errors.
56	MODBUS frame is too long.	MODBUS frame data received is too long
57	Abnormal MODBUS communication format	Improper setting of communication parameters or incorrect address or value
58	Single turn position error	Single turn position offset stored by the drive exceeds encoder resolution
59	Encoder reporting CF error	Encoder continuously reports CF domain error and is needed reset encoder

🗵 Fl. 3, Bldg E, Longda Ind. Park,Bao'an District, Shenzhen, P.R.China, 518108

(+86)180-6298-1327

- joanna.huang@honyeetech.com
- www.honyeetech.com